Natural Construct

Administration and Modeling
User’s Manual

Manual Order Number: CST441-022IBU
This document applies to Natural Construct Version 4.4 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

Readers comments are welcomed. Comments may be addressed to the Documentation Department at the
address below.

Software AG

Uhlandstrasse 12

D-64297 Darmstadt

Germany

Telefax: +49 6151-92-1612

E-mail: Documentation@softwareag.com

© January 2002, Software AG
All rights reserved
Printed in the Federal Republic of Germany

Software AG and/or dl Software AG products are either trademarks or registered trademarks of Software AG.
Other products and company names mentioned herein may be the trademarks of their respective owners.

TABLE OF CONTENTS

PREFACE
Mainframe and Unix Platforms. 22
Structure of this Manual. 23
Other Resources i i e e 25
Related Documentation e 25
User Manuals i e 25
Installation Manuals 25
Other Documentation. i 26
Related Courses e e 26

1. INTRODUCTION TO NATURAL CONSTRUCT

Description of Natural Construct 28
Natural Construct Subsystems 29
Invoking Natural Construct i, 30
Natural Construct Librariest 30
SYSLIBS Libraryoo it e e e e e e e 32
SYSTEM (FNAT) Libraryoiu ittt e e 32
SYSCST Libraryoot e e e e e e 33
SYSCSTX Library. . ..o ottt ettt ettt e e et e e e e 33
NCSTDEMO, NCSTDEM2, NCSTDEMYV, and NCSTDEMS Libraries 33
USERLIB Library.o e ettt e et e et e e 33
Executing Generation Facilities from a Steplib with Natural Security Installed 34
Using Natural Construct PF-Keys 35
Help and Return Codeson Menus. 36
Natural Construct Online Help. 37
Panel-Level Help 37
Field-Level Help e e e e e i i 39
Passive. . o e e 39
ACTIVE. i e e 40

Natural Construct Administration and Modeling User’s Manual

Automatic Upper Case Translation. 41
Storing Saved Modules e 42

2. USING THE ADMINISTRATION SUBSYSTEM

Administration Main Menu. e 46
Maintain Models Function. 48
PF4A (frame) e e 54
Code Frame Menu Function 57
Edit Code Frame Function.. i 58
Save Code Frame Function 59

List Code Frames Function i, 59
Purge Code Frame Function 60
Clear Edit Buffer Function 60
Print Saved Code Frame Function 61
Maintain Subprograms Function 61
Maintain Control Record Function 62
Compare Menu Function i, 66
Compare Models Function i, 67
Comparing the Components of Two Models in Different Files 68
Comparing the Components for Two Models in the Same File 69
Compare a Range of Models with the Same Name in Two Files............ 70
Compare Frames Function. i, 72
Compare Two Code Frames. 73
Comparing a Range of Frames with the Same Name in Two Files.......... 76
Comparing All the Frames Used by TwoModels 78
Drivers Menu Function e 79
Multilingual Support for Natural Construct 80
PF12 (Jang)o 81
Administration Main Menu in Translation Mode 83
Using Translation Mode. e 84
Editing Text in the Current Language 86
Translate Text to Another Language 87
User Exit Subprograms to Implement Security 90
Defining Default Specifications 91
Using the CSXDEFLT Subprogramt 93
Using Library-Specific Defaulting. 94

Table of Contents

Using CSXCNAME Overridesottt e e e e 95
Assigning Corporate Defaults 96
Using Predict Keywords. i 97
Defining a Default Primary Key 97
Defining a Default Logical Hold Field. 98
Defining a Default Object Description. 98

3. USING THE CODE FRAME EDITOR

Invoking the Code Frame Editor. 100
Using the Code Frame Editor i, 102
Order of Command Execution 107
Line Commandsttt 107
Edit Commands 110
Positional Edit Commands i 112
Maintain Current PF-key Profile Window 113
Edit Recovery 114
GUI Sample Subprogram. i 115

4. CREATING NEW MODELS

Components of a Natural Construct Model 118
Buildinga New Model e 121
Step 1: Define the Scope of the Model 122
Isthe Scope Too Broad? 122

Is the Scope Too Narrow?. i ettt 123
What to Generateand Why 123
Step 2: Create the Prototype 124
Step 3: Scrutinize the Prototype 124
Step 4: Isolate the Parameters in the Prototype 125
Which Elements Need to be Parameterized? 125
Remove Redundant Parameters 125
Compile Time Versus Execution Time 126
Step 5: Create Code Frame(s) and Define the Model. 126
Substitution Parameters 127
Parameters Supplied by Generation Subprograms 128

Natural Construct Administration and Modeling User’s Manual

Parameters Supplied by Nested Code Frames 129
Parameters Supplied by User Exits 131
Add User Exit Points e 132
Code Frame Conditions ittt 135
NOtES . o et e e 138
Define the Model. e e 139
Naming Conventions for Model Components 140
Step 6: Create the Model PDA i 142
Model PD A ... e 146
#PDA-CONDITION-CODES e e 147
#PDA-USER-AREA 148
CU— P A .. 149
#PDA-MODKE. 151
#PDA-OBJECT-TYPE e e 151
#PDA-MODIFY-HEADERIL e 151
#PDA-MODIFY-HEADER2 e 152
#PDA-LEFT-PROMPT e e et 152
#PDA-RIGHT-PROMPT e e et 152
HPDA-PHASE 152
#PDA-DIALOG-METHOD e 153
#PDA-TRANSLATION-MODE e 153
#PDA-USERX-NAME. e e e 153
#PDA-PE-NAME. e e 154
#PDA-PF-NUMBER e e e 155
HPDA-PF-KEY e 156
#PDA-TITLE e e e e e e e 157
#PDA-GEN-PROGRAM e e e 157
#PDA-MODEL-VERSION e e e 157
#PDA-HELP-INDICATOR. e e 157
#PDA-USER-DEFINED-AREA e 157
#PDA-UNDERSCORE-LINE. e 158
#PDA-RIGHT-PROMPT-OF e 158
#PDA-DISPLAY-INDICATOR.t e e 158
#PDA-CURS-FIELD. e e e 158
HP D A-CVn. .. e 159
#PDA-SCROLL-INDICATORt et 159

Table of Contents

#PDA-DYNAMIC-ATTR-CHARS. e 159
#PDA-FRAME-PARM e e 161
HPDA-SY ST EM. e e 161
CSAST D PDA . .. 161
MG . .o 161
MSG-NR .. 162
MSG-DAT A . . 162
RETURN-CODE e e e e e e e 162
ERROR-FIELD e e e e e e 162
ERROR-FIELD-INDEX1/2/3ot e e 162
Step 7: Create the Translation LDAs and Maintenance Maps 163
Translation LDAS e e 163
Maintenance Maps i e 167
Step 8: Create the Model Subprograms i, 168
Maintenance Subprogramsttt e 168
When are Maintenance Subprograms Invoked? 169
Generation Main Menuttt 169
User Exit Editor i 169
Pre-generation Subprogram. 170
Generation SUbpPrograms.t e 170
Example of a Generation Subprogram 171
Post-generation Subprogram 172
Stack Order of Substitution Parameters.............................. 173
Blanksversus Nulls 173
Clear SUbProgramt 174
When are Clear Subprograms Invoked? 174
Save Subprogram 175
Read Subprogram. 176
Example of a Read Subprogram 177
Sample User Exit Subprograms 177
Example of a Sample Subprogram, 177
Document Subprogram. 177
Example of a Document Subprogram 178
Debugging a Model. 181
Miscellaneous Tips and Precautions.............., 184

Natural Construct Administration and Modeling User’s Manual

Implementing Your Model. e
Code Alignment of Generated Statement Models
Utility Subprograms and Helproutines.

5. NEW MODEL EXAMPLE

Procedure for Building the Example Model
Defining the Scope of the Model
Scrutinizing the Prototype. e
Parameters for the Program Header.
Parameters for the Program Body.
Creating the Code Frame and Definingthe Model
Creating the Code Frame. i,
Example of the Code Frame.
Defining the Model.
Creating the Model PDA
Example of the Model PDA e
Creating Translation LDAs and Maintenance Maps
Creating the Translation LDAs e
Example of the Translation LDAs
Creating the Maintenance Mapst
Example of the Maintenance Maps.
Creating the Maintenance Subprograms
Example of the Maintenance Subprograms
Creating the Pre-generation Subprogram
Example of the Pre-generation Subprogram.
Creating the Post-generation Subprogram................................
Example of the Post-generation Subprogram............................
Creating the Clear Subprogramttt
Example of the Clear Subprogram iiiiu..
Creating the Save Subprogram
Example of the Save Subprogram..............
Creating the Read Subprogram. i, ..
Example of the Read Subprogram..............
Creating the Generation Subprogram..............
Example of the Generation Subprogram.

Table of Contents

10.

Creating the Document Subprogram iiiieo....

Example of the Document Subprogram

Test the Model Subprograms.,
Implementing the Model

CST-PDA MODEL
Introduction
Parameters for the CST-PDA Model.

Standard Parameters Panel
Layout of the Generated Model PDA

CST-CLEAR MODEL
Introduction
Parameters for the CST-Clear Model

Standard Parameters Panel
User Exits for the CST-Clear Model

CST-READ MODEL
Introduction
Parameters for the CST-Read Model

Standard Parameters Panel
User Exits for the CST-Read Model

CST-SAVE MODEL
Introduction
Parameters for the CST-Save Model.

Standard Parameters Panel
User Exits for the CST-Save Model.

CST-MODIFY AND CST-MODIFY-332 MODELS
Introduction
CST-Modify Model e e e
Parameters for the CST-Modify Model
Standard Parameters Panel
PES (Windw)o e
PFG (PIREY) . . oo

Natural Construct Administration and Modeling User’s Manual

User Exits for the CST-Modify Model. 249
CST-Modify-332 Model. e e 250
Example of a Model Modify Subprogram 251
Parameters for the CST-Modify-332 Model 253
Standard Parameters Panel 253
User Exits for the CST-Modify-332 Model 256
11. CST-PREGEN MODEL
Introduction 258
Parameters for the CST-Pregen Model 259
Standard Parameters Panel 259
User Exits for the CST-Pregen Model. 261
12. CST-POSTGEN MODEL
Introduction 264
Parameters for the CST-Postgen Model 265
Standard Parameters Panel 265
User Exits for the CST-Postgen Model 267
13. CST-FRAME MODEL
Sample Subprograms 270
Generation SUDPrograms.ttt 271
Parameters for the CST-Frame Model 272
Standard Parameters Panel 272
User Exits for the CST-Frame Model 274
14. CST-DOCUMENT MODEL
Introduction 276
Parameters for the CST-Document Model 277
Standard Parameters Panel 277
Additional Parameters Panel. 279
User Exits for the CST-Document Model 280

—10 -

Table of Contents

15.

16.

17.

18.

CST-VALIDATE MODEL

Introduction 282

Parameters for the CST-Validate Model. 283
Standard Parameters Panel 283

User Exits for the CST-Validate Model 285
Coding Validations it e 285
Validating Array Fields 286

CST-STREAM MODEL

Introduction 288

Parameters for the CST-Stream Model. 289
Standard Parameters Panel 289

User Exits for the CST-Stream Model 291

CST-SHELL MODEL

Introduction 294

Parameters for the CST-Shell Model 295
Standard Parameters Panel 295

User Exits for the CST-Shell Model 298

USER EXITS FOR THE NATURAL CONSTRUCT MODELS

Introduction 300

User Exitso e 301
Reusing User Exit Code e 301
Invoking the User Exit Editor 302

User Exits Panel. e 302

Defining User Exits e e 304

Supplied User Exits e 305
ADDITIONAL-INITIALIZATIONS. . . . e e e 305
ADDITIONAL-SUBSTITUTION-VALUES i 305
ADDITIONAL-TRANSLATIONS e e e 308
AFTER-INPUT e e e i 309
AFTER-INVOKE-SUBPANELS e 310
ASSIGN-DERIVED-VALUES e e 310
BEFORE-CHECK-ERROR i 312
BEFORE-INPUT e e e 312

—11 -

Natural Construct Administration and Modeling User’s Manual

BEFORE-INVOKE-SUBPANELS. e
BEFORE-REINPUT-MESSAGE i
BEFORE-STANDARD-KEY-CHECK i,
CHANGE-HISTORYt e e et
DESCRIBE-INPUTSt e e e e e e
END-OF-PROGRAM e e e e
GENERATE-CODKE e e e e e e
GENERATE-SUBROUTINES. e
GENERATE-VALIDATIONSttt e e
INPUT-ADDITIONAL-PARAMETERS i
INPUT-SCREEN e e e e e e e
LOCAL-D AT A. . e

Using with a Browse*/Browse-Select*/Object-Browse* Model
MISCELLANEOUS-SUBROUTINES. i
MISCELLANEOUS-VARIABLES. e
PARAMETE R-DAT A . . e e e
PE-RE Y . . o
PROCESS-SPECIAL-KE Y S. . . . e e e
PROVIDE-DEFAULT-VALUES e
SAVE-PARAMETERS e e e
SET-CONDITION-CODES et e
START-OF-PROGRAM e e e e
SUBSTITUTION-VALUES e et e e e
VALIDATE-DAT A . . e e e

19. MODIFYING THE SUPPLIED MODELS
Introduction e
Modify the Supplied Models i
Modifying Code Frames i e
Modifying the Model Subprograms
Modifying Copycode (CC*) and External Data Areas and Subprograms (CD¥*). ..
Example of Modifyinga Model
Using Steplibs to Modify Models. i
Invoking Natural Construct From a Steplib.................

—12 —

Table of Contents

20. EXTERNAL OBJECTS

Introduction e 348
Object Categories oo vttt e e 350
Processing Exrrors 350
Passing Structure Names e 351
Restricted Data Areas i e e 351
Callback Frunctions. i e et e 352
Subprogram Chainingttt 352

No Subprogram Chaining (CPUELNX). 352
Using Subprogram Chaining (CPUELRD) 353

Natural-Related Subprograms (CNU*). 355

CNUEL Subprogramoiiit e 355
Driver Menu Option oot 356
CNUELNX Subprogramc..iiitiie e 357
Driver Menu Option oo 358
CNUERMSG Subprogramttt 359
Driver Menu Option oo 359
CNUEXIST Subprogramcut ittt 360
Driver Menu Option oo 360
CNUGDABL Subprogram it 361
Driver Menu Option oo 361
CNUGDAEL Subprogram it 362
Driver Menu Option oo i 362
CNUGENDA Subprogram. it 363
Driver Menu Option oo 363
CNUMPPRF Subprogram 364
Driver Menu Option oo 365
CNUMSG Subprogrami ittt 366
Driver Menu Option oo 369
CNUPEXST Subprogram.t 370
Driver Menu Option it e e e e 370
CNUSEL Subprogramuttt ittt e ee e 371
Driver Menu Option e e e 371
CNUSRCNX Subprogramoutinmuiie e, 372
Driver Menu Option it e e e 372

— 13—

Natural Construct Administration and Modeling User’s Manual

CNUSRCRD Subprogramcuutitt ettt 373
Driver Menu Option oot 374
Natural-Related Helproutines (CNH™*) 375
CNHMDL Helproutine.ttt e e e e e 375
CNHMSG Helproutine. ittt e e ii e 376
CNHOBJ Helproutine i 377
Natural Construct Generation Utility Subprograms (CSU*) 378
CSU-VAR Subprogram.ttt ettt e e e e 379
Driver Menu Option oot e 379
CSUBANN Subprogram. ittt ee e 380
CSUBLDRP Subprogram. i 380
CSUBMIT Subprogram (Mainframe) i, 381
CSUBYTES Subprogram 382
Driver Menu Option oo 382
CSUCASE Subprogram ittt e 383
Driver Menu Option oot 383
CSUCCMD Subprogramuuiitine .. 384
CSUCENTR Subprogram 385
Driver Menu Option oo 385
CSUCOMPR Subprogram it 386
Driver Menu Option oo 386
CSUCTRL Subprogramttt ettt e e e 387
CSUCURS Subprogramttt et 387
CSUCURSIL Subprogramottt et 388
CSUDB2SP Subprogramt 389
Driver Menu Optionttt e 390
CSUDELFF Subprograme.ttt 391
Driver Menu Option oo e 391
CSUDEFLT Subprogram.ottt 392
CSUDYNAT Subprogramuuiumuiiieeniieenieennnn.. 393
Driver Menu Optiont e e e e 394
CSUEMLEN Subprogramuuuunmm ittt 395
Driver Menu Optiont e e e 395
CSUENDX Subprogram.ttt 396
Driver Menu Option i e e e 396

—14 —

Table of Contents

CSUFDEF Subprogramttt eeeeee e 397
Driver Menu Option oot 397
CSUFRVAR Subprograme.ttt 398
Driver Menu Optiono 398
CSUGEN Subprogramttt et 399
CSUHEADS Subprogram it 400
Driver Menu Option oo 400
CSUINCL SUbprogramuuitt ittt e 401
Driver Menu Option oo 401
CSUIS Subprogramt e 402
Driver Menu Optiono 402
CSULABEL Subprogram.t 403
Driver Menu Option oo 403
CSULENGT Subprogramc..uiiiiiii e, 404
Driver Menu Option oo 404
CSULPS Subprogram.t e 405
CSUMAX Subprogramttt ittt et e 406
Driver Menu Optiono 406
CSUMIMAX Subprogramuuuuemte ittt 407
Driver Menu Option oot 407
CSUMODEL Subprogramcuitttt ittt 408
Driver Menu Option oot 408
CSUMORE Subprogramuuniitine .. 409
Driver Menu Option oo 410
CSUMPBOX Subprogramiii ittt 411
CSUMPCPR Subprogramiinii . 411
CSUMPDUP Subprogram ittt 412
CSUMPLAY Subprogramu it 412
Driver Menu Option oot 413
CSUMPMMS Subprogram.uuiinmi ittt 414
CSUMPOVL Subprogramcuunmueie et 414
CSUMPREG Subprogramuiumu i, 415
Driver Menu Option it e e e e 415
CSUMPTAB Subprogramuiumuiieemiteeaieennnn.. 416
CSUMPTST Subprograme.itiiinme ittt 417
Driver Menu Option e e e 417

— 15—

Natural Construct Administration and Modeling User’s Manual

CSUNATFM Subprogramuiiiit ittt 418
Driver Menu Option oot 418
CSUNEWX Subprogramttt 419
Driver Menu Optiono 419
CSUPARMS Subprogrami it 420
Driver Menu Option oo 420
CSUPARTY Subprogram.t 421
CSUPPER Program i e 422
Driver Menu Option oo 422
CSUREADS Subprograme.ttt 423
CSUREF Subprogramt 424
CSUSCAN Subprogramo i e e 425
Driver Menu Option oo 425
CSUSELFYV Subprogramttt 426
CSUSETKY Subprograme.t 427
Driver Menu Option oo 427
CSUSETW Subprogram.ttt eeeeeee e 428
Driver Menu Optiono 428
CSUSORT Programt e e 429
CSUSPLIT Program.ttt i e e e 430
Driver Menu Option oo 430
CSUSUB Program (Mainframe)t 431
CSUSUBP Subprogramt ittt et e e 432
Driver Menu Option oo 432
CSUTEST Programt e e 433
Driver Menu Option oo e 433
CSUTLATE Subprogramuitit i 434
CSUTRANS Subprogram. 435
Driver Menu Option oot 438
CSUXCHK Subprogram. ittt e, 439
Driver Menu Option i e e e 439
CSU2LONG Subprograme.ttt ittt e e 440
Driver Menu Option it e e e e 440

—16 —

Table of Contents

Predict-Related Subprograms (CPU™). 441
With Natural Security Installed 441
CPU-OBJ Subprogram.ttt iiin 443

Driver Menu Option oot 443
CPU-OBJ2 Subprogram.uititt ettt ettt e 444
CPU-OREL Subprogramttt 445
CPU-VIEW Subprogramuuniitinee e, 446

Driver Menu Option oo 447
CPUEL Subprogram i 448

Driver Menu Option oo 448
CPUELDE Subprogram. ittt eeeeee 450
CPUELKY Subprogramttt eeeeeeeeen 450
CPU-FREL Subprogramiitint .. 451
CPUELNX Subprogram.u ittt e e 452

Driver Menu Option oo e 453
CPUELRD Subprograme.t ittt eee e 455

Driver Menu Option oo 456
CPUELVE Subprogramttt 457

Driver Menu Option oo 457
CPUEXIST Subprogramuuiirine .. 458

Driver Menu Option oot 458
CPUFI Subprogramcu ettt e ettt 459

Driver Menu Option oot 459
CPUHOLD Subprogramuiitiiee .. 460
CPUKY Subprogramo ittt 460
CPUREDEF Subprogram 461

Driver Menu Option oo 461
CPURL Subprogram e 462

Driver Menu Option oot e 462
CPURLRD Subprogram.ttt e 463

Driver Menu Option i e e e e 464
CPUSUPER Subprogram.ttt ieiiee e 465

Driver Menu Option it e e e 465
CPUUNIQ Subprogramttt it ittt et 466
CPUVE Subprogramttt et i 466

Driver Menu Optiont e e e e 467

17 -

Natural Construct Administration and Modeling User’s Manual

CPUVERUL Subprogramttt 468
CPUXPAND Subprogram it 468
Driver Menu Option oo 469
Predict-Related Helproutines (CPH™*). 472
CPHEL Subprogramuiiiute i 472
CPHELB Subprogramttt 473
CPHFI Helproutinet 473
CPHFIB Subprogram. ittt 474
CPHPRED Helproutine et e e 474
CPHRL Helproutine. i et e e 475
CPHSET Helproutine.t 475
CU--EM SUbprogramcu ittt 476
CU--LRP Subprogramt 477
CU--MSG Subprogram. ittt et iiia 478
CU--UL Subprogramuiiite i 479
21. UTILITIES

Introduction e 482
Import and Export Utilities. i i 483
Multiple Code Frame Export Utility.. 484
Multiple Code Frame Import Utility. 485
Frame Hardcopy Utility. e 486
Comparison Utilities. e 487
CSGCMPS Utility. . ..ot e e e e e e 487
CSGCMPL Utility. . ..ot e e e e e e e e 488
Using CSGCMPL Online i e e 488
Using CSGCMPL inBatch. 489
Upper Case Translation Utility. 491
Additional Utilities. i e e 492

—18 —

Table of Contents

22. USING SYSERR REFERENCES FOR MULTILINGUAL SUPPORT

Introduction 494
Maintenancet 494
Translation e 494

Defining SYSERR References 495

Using SYSERR References e 496
On Maps (Screen Prompts) i e 496
For Panel Headings and PF-Key Names. 497
In M essages ..o v it e 498
For Text Translation i 500

Mass Translation i i 500
Context Translation i 501
With Substitution Values. 502
Formatting SYSERR Message Text 503

Supported Areas in Natural Construct.......... 505

CSUTRANS Utility . ..ot e e e e e et e e 507

CNUMSG Utility . .o oot e e e e et e e e 511

One Language (Static) Mode i e 514

APPENDIX — GLOSSARY OF TERMSttt iiiiteeeeneeannnnns 515

INDEX ... iiiiiiiiitteeeeneesoonossssssosssssssssscsssssssssnns 519

—-19-—

Natural Construct Administration and Modeling User’s Manual

— 20—

PREFACE

This preface explains how information is presented for different platforms, as well
as the purpose and structure of the Natural Construct Administration and Model-
ing User’s Manual. It includes information about other resources you can use to
learn more about Natural Construct.

The following topics are covered:
¢ Mainframe and Unix Platforms, page 22
¢ Structure of this Manual, page 23
¢ Other Resources, page 25

—21-—

Natural Construct Administration and Modeling User’s Manual

Mainframe and Unix Platforms

The majority of the information in this manual applies to all supported platforms.
When differences in operation exist for different platforms, the following methods
are used to explain them:

¢ When a description applies to only one supported platform, the platform is indicat-
ed in parentheses. For example: (mainframe) or (Unix).

¢ When a minor difference exists, it is explained in parentheses. For example: “Enter
CSTG at the Next prompt (in the Direct command box on Unix).”

¢« When a more significant difference exists, a note explains the difference. For
example:

Unix Note:
Enter ...

« When major differences exist, separate sections or chapters are devoted to specific
platforms. The platform names are displayed in the section or chapter headings.
For example: Natural Construct for Mainframe or Natural Construct (Mainframe).

This manual explains how to invoke and use the Administration subsystem of Nat-
ural Construct. Its purpose is to help Natural Construct administrators:

¢ Maintain the existing models, code frames, and Control record for their companies
¢ Create new models
¢ Use the utilities provided with Natural Construct

This manual assumes that, as a Natural Construct administrator, you have exten-
sive knowledge of Natural and the Natural Construct Generation subsystem.

—22_

Preface

Structure of this Manual

The following table describes the information contained in each chapter:'

Chapter Title Topics

1 Introduction Contains a general description of Natural
Construct and the basic information you need
to use the Administration subsystem.

2 Using the Describes the features and functions of the

Administration Administration main menu, in both standard
Subsystem and translation mode, as well as the
implementation of security precautions.

3 Using the Code Describes the fields and features of the Code

Frame Editor Frame editor, as well as the line and edit
commands you can use in the editor.

4 Creating New Describes the procedure for creating a new

Models Natural Construct model.
5 New Model Contains an example of how to create a new
Example model following the steps in Chapter 4.

6-17 CST* Models Describes the models that generate the
parameter data areas (PDAs) and model
subprograms for your models. These chapters
include examples.

18 User Exits Describes the user exits for the Natural
Construct generation models and how you can
insert these user exits in a Natural Construct-
generated module.

19 Modifying the Describes how to modify models supplied with

Supplied Models Natural Construct.
20 External Objects Describes the subprograms and helproutines

supplied with Natural Construct.

— 23—

Natural Construct Administration and Modeling User’s Manual

Chapter Title Topics (continued)
21 Utilities Describes the utilities supplied with Natural
Construct for all supported platforms.

22 Using SYSERR Describes how to use the SYSERR utility to
References for provide multilingual support. You can use
Multilingual SYSERR message numbers to reference text
Support strings in different languages.

Appendix Appendix Contains a glossary of terms used throughout

this manual.

— 24—

Preface

Other Resources

This section provides information about other resources you can use to learn more
about Natural Construct. For information about these documents and courses, con-
tact the nearest Software AG office or visit the Software AG website at
www.softwareag.com to order documents or view course schedules and locations.
You can also use the website to email questions to Customer Support.

Related Documentation

This section lists other manuals and guides in the Natural Construct manual set.

User Manuals
For information about using Natural Construct, see:

Natural Construct Generation User’s Manual
This manual is intended for developers who create applications using the supplied
models.

Natural Construct Help Text User’s Manual

This manual is intended for developers who create and maintain help text for Nat-
ural Construct-generated applications, as well as for developers who create and
maintain help text for user-written models.

Natural Construct Getting Started Guide
This guide provides a quick overview of Natural Construct and its many features
and capabilities. It is intended for programmers who are new to Natural Construct.

Installation Manuals

For information about installing Natural Construct, see the installation manual
for your platform.

— 25—

Natural Construct Administration and Modeling User’s Manual

Other Documentation
This section lists documents published by WH&O International:

e Natural Construct Tips & Techniques
This book provides a reference of tips and techniques for developing and supporting
Natural Construct applications.

e Natural Construct Application Development User’s Guide
This guide describes the basics of generating Natural Construct modules using the

supplied models.

e Natural Construct Study Guide
This guide is intended for programmers who have never used Natural Construct.

Related Courses

In addition to the documentation, the following courses are available from Soft-
ware AG:

¢ A self-study course on Natural Construct fundamentals
¢ An instructor-led course on building applications with Natural Construct

¢ An instructor-led course on modifying the existing Natural Construct models or
creating your own models

— 26 —

INTRODUCTION TO NATURAL CONSTRUCT

This chapter introduces Natural Construct and describes how to invoke sub-
systems and use PF-keys and online help. It includes sections on translating to
upper case, handling messages, storing saved modules, and using direct
commands.

The following topics are covered:
¢ Description of Natural Construct, page 28
¢ Invoking Natural Construct, page 30
¢ Using Natural Construct PF-Keys, page 35
¢ Natural Construct Online Help, page 37
¢ Automatic Upper Case Translation, page 41
¢ Natural Construct Messages, page 41
¢ Storing Saved Modules, page 42

¢ Direct Commands, page 42

27—

Natural Construct Administration and Modeling User’s Manual

Description of Natural Construct

Natural Construct is a set of tools for application developers. Created for Software
AG’s Natural/Predict environment, Natural Construct assists Natural application
developers achieve higher productivity goals than are obtainable using Natural
and Predict alone. At the same time, Natural Construct helps you standardize and
control the application development process.

Natural Construct models offer the following advantages over modules created in

Natural alone:

Advantages

Benefits

Standardization
and quality

Reusage

Productivity

Minimize errors

Create a consistent user interface and code structure.

Once your model is tested and debugged, it can be used by
multiple users, problem free. Models help share your
Natural expertise, making optimal use of available talent.

The benefits include:

¢ Reduce design considerations
¢ Speed up implementation

¢ Reduce testing requirements

Avoid errors that are introduced by program cloning.

— 28 —

Introduction to Natural Construct

Natural Construct Subsystems

Natural Construct consists of the following subsystems:

Subsystem Description
Administration Used by the Natural Construct administrator to define custom
models and maintain the models Natural Construct uses to
generate programs. The Administration subsystem is
described in detail in this manual.
Generation Used by the developer to define specifications for the Natural
Construct models and generate the following modules:
* programs
¢ subprograms
¢ helproutines
¢ subroutines
e copycode
* maps
e parameter data areas
¢ local data areas
¢ global data areas
¢ Predict program descriptions
¢ code blocks
¢ JCL text (mainframe)
¢ User exit code
For information about this subsystem, refer to Natural
Construct Generation User’s Manual.
Help Text Used by documentors or developers to create and maintain

help text at the map and/or input field level. For more
information about this subsystem, refer to Natural Construct
Help Text User’s Manual.

— 29—

Natural Construct Administration and Modeling User’s Manual

Invoking Natural Construct

You can invoke the Administration subsystem in standard or translation mode,
which allows you to create multilingual specification panels for developers, as well
as dynamically maintain the components of Natural Construct panels.

The following sections describe how to invoke each Natural Construct subsystem,
how to invoke the Administration subsystem in standard and translation mode,
and how to invoke the generation facilities from a steplib with Natural Security
installed.

Note: Always terminate Natural Construct by pressing the quit PF-key or en-
tering a period (.) in the input field on the Generation main menu. This
method ensures proper cleanup of the environment.

Natural Construct Libraries

Copies of Natural Construct are stored in the libraries shown on the following
page.

—30-

Introduction to

SYSLIBS

SYSTEM

FNAT/FUSER F

SYSCST F

SYSCSTX

Mainframe
NCSTDEMO (Adabas)
NCSTDEM?2 (DB2)

NCSTDEMV (VSAM)

Unix
NCSTDEMS (SQL)

USERLIB

Natural Construct Libraries

—-31-

Natural Construct

Generation
subsystem
Help Text
subsystem
Generation
subsystem
Help Text
subsystem
Administration

subsystem
Generation
subsystem
Help Text
subsystem

Security routines
Administration
subsystem

Demo
system
User
applications

Natural Construct Administration and Modeling User’s Manual

Each library is available to different users and contains different subsystems. The
libraries are described in the following sections.

SYSLIBS Library

The SYSLIBS library contains modules used by Natural Construct. The following
table indicates who can use the library, the subsystems it contains, and the com-
mand used to invoke each subsystem:

Users Subsystems Enter at the Next prompt:
All users Generation ncstg
Help Text ncsth

SYSTEM (FNAT) Library

The SYSTEM library contains modules used by Natural Construct-generated ap-
plications. The following table indicates who can use the library, the subsystems it
contains, and the command used to invoke each subsystem:

Users Subsystems Enter at the Next prompt:
All users Generation ncstg
Help Text ncsth

— 32—

Introduction to Natural Construct

SYSCST Library

The SYSCST library is used to modify the supplied models or create new ones. The
following table indicates who can use the library, the subsystems it contains, and
the command used to invoke each subsystem:

Users Subsystems Enter at the Next prompt:

Administrators Administration menu (standard mode) or menut
(translation mode)

Generation cstg
Help Text csth
SYSCSTX Library

The SYSCSTX library contains sample security routines provided with Natural
Construct. It is used by administrators.

The security routines can be used as is or modified as desired. To make the routines
active, they must be moved to the SYSCST library.

NCSTDEMO, NCSTDEM2, NCSTDEMV, and NCSTDEMS
Libraries

These libraries contain the Natural Construct demo system for different systems.
To invoke the demo system, enter “menu” at the Next prompt in the applicable
library.

USERLIB Library

This library is created by Natural Construct users.

—-33-—

Natural Construct Administration and Modeling User’s Manual

Executing Generation Facilities from a Steplib with Natural
Security Installed

With Natural Security installed, you can invoke the Natural Construct generation
facilities from a steplib. This allows you to override the supplied model subpro-
grams at a higher level steplib without disturbing the modules supplied by Natural
Construct.

For example, you can define the following steplibs in your development library:
CSTMODS (your modification library)

SYSCST

SYSLIBS

SYSTEM

Using this configuration, you can easily change your standards without disturbing
the supplied modules. To modify any modules in the SYSCST or SYSTEM library
that are affected by changes, copy them into the CSTMODS library.

Note: You can also define multiple modification libraries in the steplib chain (to
reflect corporate versus application standards).

When you invoke Natural Construct from a steplib, the highest level steplib should
contain a replacement for the NCSTG program, such as:

FETCH ' CSTG
END

Otherwise, the NCSTG program invokes the version of Natural Construct stored
in the SYSLIBS library.

Note: IfNatural Security is not installed, see USR1025P in the SYSEXT library
for an example of how to set up your steplibs.

—34-—

Introduction to Natural Construct

Using Natural Construct PF-Keys

In Natural Construct, certain PF-keys have standard functions (pressing the PF1
key invokes online help, for example). The PF-key lines, which are located at the
bottom of most panels, display the PF-key functions for that panel.

PF-keys 13 to 24 are equivalent to PF-keys 1 to 12, respectively. However, only PF1
to PF12 are displayed.

Note: You can change the function and/or description associated with each key
(for more information, see the Administration Main Menu, page 46).
Within this manual, we refer to the standard default values.

By default, the standard PF-keys and functions are:

PF-Key Name Function

PF1 help Displays help for a particular panel or field.

When the cursor is in a field followed by an asterisk
(*), pressing PF1 displays a window from which
you can select a valid value for the field. For
information, see Field-Level Help, page 39.

When the cursor is not in a field followed by an
asterisk (*), pressing PF1 displays a table of
contents from which you can select a topic. For
information, see Panel-Level Help, page 37.

Note: An asterisk is the default help indicator for
Natural Construct. The help indicator for your
organization may be different.

PF2 retrn Displays the previous panel. Pressing PF2 is

equivalent to entering a period (.) in the Code field
on a menu.

— 35—

Natural Construct Administration and Modeling User’s Manual

PF-Key

Name

Function (continued)

PF3

PF7
PF8
PF10

PF11

PF12

quit

bkwrd
frwrd

left

right

main

Terminates the Natural Construct session. In most
cases, a confirmation window is displayed when
you press PF3. Press PF3 again to complete the
termination process and return to Natural.

Scrolls backward (up) through data.
Scrolls forward (down) through data.

Displays the panel to the left of the current panel.
If you are currently on the first panel in a series of
panels, pressing PF10 displays the last panel in
the series.

Displays the panel to the right of the current panel.
If you are currently on the last panel in a series of
panels, pressing PF11 displays the first panel in
the series.

Displays the Natural Construct Administration
main menu.

Help and Return Codes on Menus

On each Natural Construct menu, you are given the options “?” and “.” as valid
menu codes. Typing a question mark (?) in the Function field and pressing Enter
displays help for that panel. It is equivalent to pressing PF1 (help). Typing a period
(.) and pressing Enter terminates the current program and returns you to the pre-
vious menu. It is equivalent to pressing PF2 (retrn).

- 36—

Introduction to Natural Construct

Natural Construct Online Help

Natural Construct provides extensive online help. You can display both general
help information for each panel (panel-level help) or help for a specific field (field-
level help). Natural Construct online help is described in the following sections.

Panel-Level Help

While you are using Natural Construct, you can display help information about the

current panel by moving the cursor anywhere on the panel (except an input field)
and pressing PF1 (help).

Note: Ifthe cursorisin aninput field when you request help, Natural Construct

displays help information for that field. For more information, see Field-
Level Help, page 39.

—-37-—

Natural Construct Administration and Modeling User’s Manual

The following example shows the panel-level help window for the Administration
main menu:

Panel Hel p
Adm ni stration Main Menu

This nenu lists the functions available within the Adm nistration
subsystem you use these functions to perform various adm nistrative
duties within Construct.

For translati on node details, see:
<<Admi ni stration Main Menu>>

For exanple, you use these functions to:

- maintain the Construct Control record defaults, such as the
default PF-key settings and dynanmic attribute characters

- maintain the Construct conponents, such as the code franmes and
subprograns used by each nodel

- invoke the supplied utilities to conpare nodels or code franes

- use the supplied driver prograns to invoke many of the internal
Construct subprograns

Page ... : 1 [2
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF1
frwd help retrn quit bkwrd frwd

Help for: P/ CS/ CSDMNMD/ 1

Panel-Level Help for the Administration Main Menu — Page 1

You can use the following actions to move through the help windows:

To scroll forward through the pages of help text, either enter a number in the Page
field, press PF8 (frwrd), or press Enter.

To scroll backward, either enter a number in the Page field or press PF7 (bkwrd).
To return to the main screen, press PF2 (retrn).
To display help about how to use online help, press PF1 (help) in any help window.

To display information about a topic enclosed within angle brackets (<< >>), move
the cursor over the name and press Enter. A window is displayed, containing help
information about the selected topic.

— 38 —

Introduction to Natural Construct

Field-Level Help

Natural Construct has two types of field-level help: passive and active. Passive
field-level help displays a description of a field on a panel. Active field-level help
displays a selection window containing the valid values for a field. If active help is
available, the field is followed by an asterisk (*).

Passive

» To display passive field-level help, either:

=

Move the cursor to any field that is not followed by an asterisk (*).
Press PF1 (help).
or

1 Type a question mark (?) in the first-character position of any field that is not
followed by an asterisk (*).

2 Press Enter (mainframe).

—~ 39—

=

Natural Construct Administration and Modeling User’s Manual

Active

To display active field-level help, either:

Move the cursor to a field followed by an *.

Press PF1 (help).

or

Type “?” in the first-character position of a field followed by an *.
Press Enter (mainframe).

The following example shows the help window for the Relationship name field:

CPHRL Nat ural Construct CPHRLO

Aug 20 Sel ect Predict Relationship 1 of 1

Rel ati onshi p Rel ati onship type

NCST- CUSTOVER- ORDER- HEADER Nat ural Construct

NCST- LI NE- HAS- DI STRI BUTI ON Natural Construct

NCST- ORDER- HAS- LI NES Nat ural Construct

NCST- PCLI CY- COVERS- VEHI CLES Nat ural Const ruct

NCST- POLI CY- HAS- | NQUI RI ES Nat ural Construct

NCST- PQLI CY- | S- FOR- CUSTOMVER Nat ural Const ruct

NCST- PRODUCT- ORDER- LI NES Nat ural Construct

NCST- VEHI CLES- HAVE- COVERAGES Nat ural Const ruct

NCST- VEHI CLES- MUST- EXI ST Nat ural Construct

NCST- WAREHOUSE- CUSTOMVER Natural Construct

Rel ationship

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9-
help retrn bkwrd frwd

Position cursor or enter screen value to select

Active Field-Level Help Window

To select a value from the help window:

Move the cursor to the line containing the value.
Press Enter.

You are returned to the original panel and the selected value is displayed in the
field for which you requested help.

—40 -

Introduction to Natural Construct

Automatic Upper Case Translation

Natural Construct automatically performs the commands needed to convert your
text from lower or mixed case to upper case where appropriate. Headings are dis-
played exactly as entered (lower or upper case), but if certain specifications must
be in upper case, Natural Construct converts them. When you exit, the case setting
is restored to the same value as when Natural Construct was invoked.

Mainframe Note:
You must specify your teleprocessing (TP) monitor’s command for lower case. In
Com-Plete, for example, issue the LOW command.

Natural Construct Messages

Natural Construct sounds an alarm and displays warning messages for errors.
Make sure the alarm on your terminal is set to an audible volume.

Natural Construct also supports multilingual messages for your generated pro-
grams. If you use message numbers, the message text for the specified language is
retrieved at execution time. If you use message text, the text for the specified lan-
guage is inserted into the program at generation time.

You can change or add to these messages using the SYSERR utility.

— Messages 8000 to 8200 are stored in the SYSTEM and SYSCST libraries

— Messages 8300 to 8500 are stored in the CSTAPPL library

— Messages 1 to 9999 (error message text) are stored in the CSTMSG library
— Messages 1 to 9999 (screen prompt text) are stored in the CSTLDA library
— Messages 1 to 9999 (text for Actions) are stored in the CSTACT library

— Messages 1 to 9999 (text for PF-keys) are stored in the CSTPFK library

For all REINPUT and INPUT message numbers, you can also use the SYSERR
utility to add other languages. Generation and CDUTRANS messages are stored
in the CSTAPPL library. For information about defining references, see Defining
SYSERR References, page 495.

41—

Natural Construct Administration and Modeling User’s Manual

Storing Saved Modules

Any module generated by the default generators and saved by Natural Construct
is stored as a Natural 2 structured mode object in the current library. You can edit
this module as you would any structured mode Natural object.

Direct Commands

To navigate within the Administration subsystem, you can enter codes on menus,
press PF-keys, or issue direct commands. Direct commands take you to any func-
tion or menu within the subsystem without using intervening menus. They are
useful for experienced users who know the menu structure, valid menu codes, and
the required parameters at each menu level. The following example shows the
Command line:

Comrand

You can string together as many commands as you like. If one of the codes is not
valid on the corresponding menu, Natural Construct displays that menu so you can
enter a valid code.

—42 —

Introduction to Natural Construct

The following diagram illustrates a sample direct command:

N
O
& &
N
@Qp &
e < e o
(] O
& <& &
P = & Qeé’

l l
F E/ FRANME/ DESCRI PTI ON

Sample Direct Command

This direct command invokes the Code Frame Menu (menu code F on the Admin-
istration main menu) and the Edit Code Frame function (menu code E on the Code
Frame menu) and displays the code frame called “FRAME” with the description,
“DESCRIPTION?”, in the Code Frame editor.

A direct command contains the codes you enter on successive menus. Each direct
command must begin with a valid menu code. When entering a direct command,
leave a space between menu codes to indicate a new menu or level. To indicate pa-
rameters that are at the same level, use a slash (/) to separate them.

Note: The slash (/) is Natural Construct’s default input delimiter. You can
change the default delimiter by issuing the GLOBALS ID=new-character
command at the Next prompt (Direct command box for Unix) or the Nat-
ural command line.

— 43—

Natural Construct Administration and Modeling User’s Manual

When you enter direct commands on the command line for a menu, Natural Con-

struct first determines whether the code is a valid option on that menu. If no code
on the current menu matches the first code in the direct command, Natural Con-

struct checks the main menu for a match.

You can also issue direct commands at the Natural Next prompt (Direct command
box for Unix). While you are in the SYSCST library, for example, you can enter:

MENU F E/ FRAME/ DESCRI PTI ON
to invoke the Administration subsystem (MENU) and edit the specified code frame.

— 44 —

USING THE ADMINISTRATION SUBSYSTEM

This chapter describes how to use the Administration subsystem of Natural
Construct.

The following topics are covered:
¢ Administration Main Menu, page 46
¢ Multilingual Support for Natural Construct, page 80
¢ Administration Main Menu in Translation Mode, page 83
¢ User Exit Subprograms to Implement Security, page 90

For information about invoking the Administration subsystem, see Invoking Nat-
ural Construct, page 30.

— 45—

Natural Construct Administration and Modeling User’s Manual

Administration Main Menu

When you invoke the Administration subsystem, the Administration main menu is

displayed:
CSDMAI N Nat ur al Construct CSDMNMD
Cct 04 Admi ni stration Main Menu 1of 1
Functi ons
M Mai ntai n Mdel s
F Code Frane Menu
S Mai ntai n Subprograns
R Maintain Control Record
C Conpare Menu
D Drivers Menu
? Help
Ret urn
Function _
Command
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit mai n

Administration Main Menu

» To perform a function listed on this menu:

1 Type the corresponding one-character function code in the Function field.

2 Press Enter.

— 46 —

Using the Administration Subsystem

The functions available through the Administration main menu are:

Code Function

Description

M

Maintain
Models

Code Frame
Menu

Maintain
Subprograms

Note:

Maintain
Control Record

Compare Menu

Drivers Menu

Displays the Maintain Models panel. On this panel,
you can maintain the components that define a model
for the Natural Construct generation process.

Displays the Code Frame menu. Using the functions
available through this menu, you can maintain the
code frames used by the generation models.

Displays the Maintain Subprograms panel. On this
panel, you can maintain the modify specification
subprograms used by the generation models.

To ensure backward compatibility, this option
supports models written prior to V3.4.1. that generate
subprogram records. Models generated by CST-
MODIFY define windows and PF-keys without using
the subprogram records.

Displays the Maintain Control Record panel. On this
panel, you can maintain the default values for the
Natural Construct Control record (PF-keys, dynamic
attribute characters, help indicator, etc.).

Displays the Compare menu. Using the functions
available through this menu, you can compare code
frames used by the models.

Displays the Drivers menu. Using the driver programs
available through this menu, you can invoke many of
the utility subprograms supplied with Natural
Construct. (The source code for these subprograms is
not supplied.)

These functions are described in the following sections. For a description of the
Help and Return functions, see Help and Return Codes on Menus, page 36.

—47 -

Natural Construct Administration and Modeling User’s Manual

Maintain Models Function

When you invoke the Maintain Models function, the Maintain Models panel is

displayed:
CSDFM Natur al Construct CSDFMD
Aug 07 Mai nt ai n Mbdel s 1of 1
Action __ ABCDMNPR
Model ... BROWSE
Description *0200. 1
BROWSE Pr ogram
PDA name CUSCPDA _ Status window Y
Programming node S Comment start indicator .. **_
TYPE o P Program Conment end indicator __
Code frame(s) CSCA?___ CsCB?___ Csce?

Mbdi fy server specificatn CUSCMA__ CUSCMB__ CUSCMC__ CUSCMG

Modi fy client specificatn CUSCVA__ CUSCMB__ CUSCMC__

Cear specification CUSCC____ Post -generation CUSCPS__
Read specification CUSCR____ Save specification CUSCS___
Pre-generation CUSCPR__ Docunent specification ... CUS-D___
Command
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit frane mai n

Maintain Models Panel for the Browse Model

For a description of the actions available through the Action field, press PF1 (help)
when the cursor is in the field.

— 48—

Using the Administration Subsystem

The fields on the Maintain Models panel are:

Field

Description

Model

Description

PDA name

Name of the model you are maintaining.

Brief description of the model or the SYSERR number that
supplies the description. When a module is generated
using the specified model, this description is displayed as
the first heading on the panel.

Because this description is part of the model user interface,
you can use SYSERR numbers from the CSTLDA file to
support dynamic translation. Within SYSERR, you can
also specify substitution variables (instead of hardcoding
the message). For example, SYSERR number *0200.1
corresponds to the English text, :1:Program. If you specify
*0200.1 in this field for the Browse model, Natural
Construct replaces :1: with the model name and the first
panel heading becomes Browse Program. (The actual
heading is displayed below this field.)

For more information about dynamic translation, see
Maintenance, page 494.

Name of the parameter data area (PDA) for the model. This
PDA is passed to the model subprograms to capture model
specifications. For more information, see Step 1: Define
the Scope of the Model, page 122.

— 49—

Natural Construct Administration and Modeling User’s Manual

Field Description (continued)

Status window Code that indicates whether the Status window is
displayed when a module is generated.

Ifthe code is Y, you can press PF5 (optns) while generating
the module to display the Status window, which contains
information about the generation progress, save, and/or
stow functions. You can also decide how the Status window
is displayed. The following example uses symbols:

<-- PREGEN CUWNGPR

--> FRAME CUVN9
--> FRAME CU-- B9

The following example uses text:

Endi ng Pre-generation Subprogram CUMNGPR
Starting Code Frame CUM\9
Starting Code Franme CU--B9
¢ To display symbols, enter “Y”.
¢ To display text, enter “T”.
¢ If you do not want the window displayed, enter “N”.

If this field is blank, it defaults to N.

Programming Mode for the resulting code. Valid codes are S (structured),

mode SD (structured data), or R (reporting) mode. All supplied
models use structured mode.

Comment start Set of characters that indicate the beginning of a comment

indicator line for the generated module. As required for Natural

modules, the default value is **. You can change this value
for other supported programming languages.

- 50—

Using the Administration Subsystem

Field Description (continued)

Type Code for the type of module generated by this model. Valid
module types are:

e P (program)

¢ E (external; non-Natural)

¢ * (super model modules)

¢ N (subprogram)

¢ S (subroutine)

¢ H (helproutine)

¢ M (map)

¢ L (local data area)

¢ A (parameter data area)

¢ G (global data area)

« J (JCL statements; mainframe)
* . (statement code block; .g)

e T (text)

¢ C (copycode)

¢ blank (determined when a module is generated using

this model; model subprograms must assign the CU—
PDA #PDA-OBJECT-TYPE parameter)

Comment end Set of special characters that indicate the end of a

indicator comment. For some programming languages, this set of
characters is required to generate modules. For PL1, for
example, the indicator is */.

Code frame(s) Names of the code frames used to create the specified
model. The code frames are listed in the sequence they are
used during generation. You can specify a maximum of five
code frame names for each model; you can only use existing
code frames.

You can select a code frame and invoke the Code Frame
editor from this panel. In the editor, you can also define
nested code frames. For more information, see PF4
(frame), page 54.

—51 -

Natural Construct Administration and Modeling User’s Manual

Field Description (continued)

Note: Code frames used to generate maps and data areas can
only have subprogram and comment lines.

Modify server Names of the subprograms executed when the Modify

specificatn function is invoked by the Natural Construct nucleus for
server platform generation. The subprograms are listed in
execution sequence. To change the order of execution,
change the order of these subprograms. You can specify a
maximum of 10 subprograms.

Modify client Names of the subprograms executed when the Modify

specificatn function is invoked by the nucleus for client platform
generation. The subprograms are listed in the sequence
they are executed. To change the order of execution, change
the order of these subprograms. You can specify a
maximum of 10 subprograms.

Clear Name of the subprogram executed when the Clear function

specification is invoked by the nucleus. The Clear function is
automatically invoked prior to the Read function or when
anew model name is specified and the parameter data area
(PDA) is different. It is typically used to set default values
for the model.

Post-generation Name of the subprogram executed when the Post-
generation function is invoked by the nucleus. This
subprogram applies post-generation changes to the
generated program. It is typically used to perform model
specification substitutions; it is not supported for models
that cannot be regenerated.

Read Name of the subprogram executed when the Read function

specification is invoked by the nucleus. It is typically used to retrieve the
specifications from a previously-generated module It is not
supported for models that cannot be regenerated.

—52—

Using the Administration Subsystem

Field

Description (continued)

Save
specification

Pre-generation

Document
specification

Name of the subprogram executed when the Save function
is invoked by the nucleus (not supported for models that
cannot be regenerated). This subprogram is executed
immediately after the pre-generation subprogram is
executed. It writes the generation specifications so the
generated program can be read using the Read function.

If a user marks the Save Specification Only option, this
subprogram can be invoked even if generation cannot be
completed due to specification errors.

Name of the subprogram executed when the Pre-
generation function is invoked by the nucleus. This
subprogram sets up internal variables before the
generation process begins. It is typically used to set PDAC-
variables for code frame manipulation or to generate a
module for simple models.

Name of the subprogram executed when the Document
function is invoked by the nucleus. This subprogram
documents generated modules in Predict as they are saved
or stowed.

—-53—

Natural Construct Administration and Modeling User’s Manual

PF4 (frame)

Press PF4 (frame) on the Maintain Models panel to select a code frame for editing.
The following example shows the Maintain Models panel for the Browse model:

CSDFM Natur al Construct CSDFMD
Aug 07 Mai nt ai n Mbdel s 1of 1
Action __ ABCDMNPR
Model ... BROWSE
Description *0200. 1
BROWSE Pr ogram

PDA name CUSCPDA Status window Y

Programming node S Comment start indicator .. **_

TYPE o P Program Conment end indicator _

Code frame(s) CSCA?___ CsCB?___ Csce?

Mdify server specificatn CUSCMA__ CUSCMB__ CUSCMC__ CUSCMG__

Modi fy client specificatn CUSCVA__ CUSCMB__ CUSCMC__

Cear specification CUSCC____ Post -generation CUSCPS__
Read specification CUSCR___ Save specification CUSCS___
Pre-generation CUSCPR__ Docunent specification ... CUS-D___
Command
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit frane mai n

Maintain Models Panel for the Browse Model

» To select a code frame for editing:

1 DMove the cursor over the code frame you want to edit.

2 Press PF4.
The specified code frame is displayed in the Code Frame editor.

Notice that the code frame names listed in the Code frame(s) field end with a ques-
tion mark (?). All code frames supplied with Natural Construct end with 9. To
define a custom code frame for your model, copy the supplied code frame, change
the 9 to a lower number (from 1 to 8), and modify the code frame as desired.

— 54—

Using the Administration Subsystem

The next time Natural Construct calls that code frame, the one with the lowest
number is used. For example, you can copy the CSCA9 code frame, change the
name to CSCAS, and edit it as desired. The next time Natural Construct calls CS-
CA?, CSCAS is used.

When code frames are referenced in code (nested code frames), their names also
end with the question mark character. The question mark indicates a hierarchy in
which the code frame with the lowest number at the end of its name is used.

The code frame naming convention is as follows:

The first character in a code frame name is always C

The second and third characters are reserved for the two-character model identifi-
ers, such as MN for the Menu model or dash (—) for generic code frames used by
multiple models

The fourth character is a single letter from A-Z indicating a position within a series
of code frames

The fifth, sixth, and seventh characters are optional. They indicate specific func-
tions that are typically performed by nested code frames, such as wildcard support

The last character must be a number from 1-9, with 9 reserved for the Natural Con-
struct-supplied code frames and 8 reserved for any future updates

Note: The last character refers to the last position in the code frame name,
which may or may not be the eighth physical position.

- 55—

Natural Construct Administration and Modeling User’s Manual

Example of a code frame containing nested code frames

The following example shows the CSLB9 code frame. The code frame referenced
from within this code frame (nested code frames) is highlighted:

Code Frame CSLB9 S| ZE 890
Description Browse- Sel ect* nodel initial setup FREE 60071
> >+ ABS X X-Y _ S 17 L1
Al...+ ... 1. .+2....+...3. ... +...4 ... +...6....+...6....+...7.. TC

*

* Define Formats
FORMAT KD=ON LS=133 SG=OFF ES=CFF ZP=OFF
*

PERFORM | NI TI ALI ZATI ONS
*

PASSWORD- CHECKI NG 1
| NCLUDE CCPASSW/* Passwor d checki ng. "
DI RECT- COMWAND- PROCESSI NG 1
* *
* | nclude standard code to check incom ng direct command. *

I NCLUDE CCDCIN /* Process incom ng direct conmand.
*

(HELPROUTI NE OR SUBPROGRAM) AND CHECK- W LD- CHARACTER 1
PERFORM CHECK- W LD- CHARACTER /* See whet her input data contains *, <, > "
START- OF- PROGRAM U
CSLBA? F

B A T T T S R - T T - R Y e

Example of a Code Frame Containing Nested Code Frames

For more information about modifying the supplied code frames, see Creating the
Code Frame and Defining the Model, page 193.

— 56 —

Using the Administration Subsystem

Code Frame Menu Function

When you invoke the Code Frame Menu function, the Code Frame menu is

displayed:
CSMVAI N Natur al Construct CSMWNMD
Aug 07 Code Frame Menu 1of 1
Functi ons
E Edit Code Frane
S Save Code Frane
L List Code Frames
P Purge Code Frane
C Clear Edit Buffer
H Print Saved Code Frane
? Help
Ret urn
Function _
Code Franme __
Description
Command
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit mai n

Code Frame Menu

» To perform a function listed on this menu:

Type the corresponding one-character function code in the Function field.
Press Enter.

The functions available through this menu are described in the following sections.

—-57—

Natural Construct Administration and Modeling User’s Manual

Edit Code Frame Function

Use the Code Frame editor to create or modify a code frame. If you do not specify a
code frame name in the Code Frame field on the Code Frame menu, the Code
Frame editor is empty when it is displayed (see example above). If you enter the
name of an existing code frame, Natural Construct reads it into the editor.

Code Frame S| ZE
Description FREE 56825
> >+ ABS X X-Y _ S L

Code Frame Editor

To return to the Code Frame menu, enter “.” (period) at the > prompt.

The Code Frame editor supports all edit commands except the RUN, CHECK,
TEST, STOW, and SAVE command. For more information about the Code Frame
editor, see Using the Code Frame Editor, page 102.

For more information about modifying the supplied code frames, see Creating the
Code Frame and Defining the Model, page 193.

— 58 —

Using the Administration Subsystem

Save Code Frame Function

This function saves the code frame currently in the edit buffer to the Natural Con-
struct Code Frame file. If the specified code frame name already exists, the
message “Code Frame exists. Press Enter to confirm replace” is displayed. You can
either change the name or press Enter to update the existing code frame.

List Code Frames Function

The following example shows the Select Frames window for the List Code Frames
function:

CSMLI ST Nat ural Construct CSMLI STO
Cct 07 Sel ect Franes 1of 1
Fr ane Description User Dat e Ti me
C -BAN9 St andard banner SAG Sep 30,01 09:55
CBAA9 Bat ch define data area SAG Sep 30,01 09:55
CBAB9 Batch initial setup SAG Sep 30,01 09:55
CBAC9 Bat ch mai n body SAG Sep 30,01 09: 55
CBQA9 Obj ect Browse Subp define data area SAG Sep 30,01 09:55
CBOB9 Obj ect Browse Subp main body SAG Sep 30, 01 09:55
CBRA9 Obj ect Browse Static main body SAG Sep 30,01 09:55
CCNA9 Cal | nat nain body SAG Sep 30, 01 09:55
CDRA9 Driver nain body SAG Sep 30,01 09:55
CETA9 Ext endabl e | nput mai n body SAG Sep 30,01 09: 55
CFMA9 Mai nt define data area SAG Sep 30,01 09:55
Frame Detail _ Scan for
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn bkwd frwd
Position cursor or enter screen value to select

Select Frames Window

The fields in this window are:

Field Description
Frame Code frame names in alphabetical order.
Description Brief description of the corresponding code frame.

— 50—

Natural Construct Administration and Modeling User’s Manual

Field Description (continued)

User User ID code for the user who last saved the corresponding
code frame.

Date Date the corresponding code frame was last saved.

Time Time the corresponding code frame was last saved.

Frame To select a code frame, enter the code frame name in this

field. (If you enter the name of a code frame that is not
currently displayed, the list is repositioned.)

Scan for If you marked the Detail field, you can also specify a value
to scan for. Detail lines are displayed for code frames
containing the scanned value only.

Purge Code Frame Function

This function permanently removes a code frame from the Code Frame file.

Note: You cannot purge a code frame if it is currently used in a model.

Clear Edit Buffer Function

This function clears the current values from the Code Frame editor.

—- 60—

Using the Administration Subsystem

Print Saved Code Frame Function

This function prints a hardcopy of a code frame that has been saved.

Mainframe Note:
To use this function, you must have Com-Plete, CMS, TSO, or CICS with Natural/
AF or Com-Pose. For more information, see Frame Hardcopy Utility, page 486.

Maintain Subprograms Function

When you invoke the Maintain Subprograms function, the Maintain Subprogram
panel is displayed:

CSDFSP Nat ur al Construct CSDFSPO
Aug 07 Mai nt ai n Subpr ogr ans 1of 1
Action __ ABCDMNPR

Subprogram o

Description

PF-keys Used
Backward - Forward
Test ..o

Assign to #PDA- PF- AVAI LABLEL .
Assign to #PDA- PF- AVAI LABLE2 .
Assign to #PDA- PF- AVAI LABLE3 .

Optional Wndow Settings
Wndow height
Wndow width

Command
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit mai n

Maintain Subprograms Panel

—61 -

Natural Construct Administration and Modeling User’s Manual

Use this panel to maintain the PF-key and window settings for the model subpro-
grams. The Natural Construct nucleus uses these settings to determine the
window size and PF-key functions for the model maintenance panels and sample
subprograms. For a description of the actions available through the Action field,
press PF1 (help) when the cursor is in the field.

For more information about dynamic translation, see Using SYSERR Referenc-
es, page 496.

Maintain Control Record Function

When you invoke the Maintain Control Record function, the Maintain Control
Record panel is displayed:

CSCTRL Nat ur al Construct CSCTRLO
Aug 08 Mai ntain Control Record 1 of 1
PF-key Assignnents Dynami c Attributes
Main .. PF 12 NAMED *0031.5___ nmain Intensify <
Return PF 2_ NAMED *0031.2___ retrn Blue _
Qit ... PF 3_ NAMED *0031.3___ quit Geen _
Test PF 4_ NAMED *0031.4___ test White _
Backward PF 7_ NAMED *0032.2___ bkwd Pink _
Forward PF 8_ NAMED *0032.1__ frwd Red _
Move left PF 10 NAMED *0032.3___ left Turquoise _
Move right PF 11 NAMED *0032.4___ right Yellow _
Help PF 1_ NAMED *0031.1___ help Speci al Har dwar e
User exit PF 11 NAMED *0032.5___ userX Blinking _
Help indicator *0033.1___ * Italic _
Underscore character *0033.2___ ---- Underline _
O indicator (eg., 1 of 2) *0033.3___ of Reverse video _
Di sable indicator *0033.4__ -
Scroll indicator *0033.5___ >> Default return >
Position indicator(s) *0034/4___ 1 2 3 4 5 6 7 8 9
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit mai n

Maintain Control Record Panel

Use this panel to maintain the default PF-key numbers and names, special char-
acters, and dynamic attribute settings for Natural Construct.

— 62—

Using the Administration Subsystem

Note: These settings are for Natural Construct only, not for Natural Construct-
generated programs.

The fields on the Maintain Control Record panel are:

Field

Description

PF-key Assignments
PFn

Main
Return
Quit

Test
Backward
Forward
Move left
Move right
Help

Note:

PF-key numbers for the corresponding functions. For each
function (Main, Return, Quit, Test, etc.), specify the
number of the PF-key that performs the function. The PF-
key functions are:

Invokes main menu

Displays previous panel

Terminates current session

Invokes the Test function

Scrolls backward (up) through data

Scrolls forward (down) through data

Scrolls to panel on the left of current panel (previous panel)

Scrolls to panel on the right of current panel (next panel)

Invokes help for current panel

Only PF-keys 1 through 12 are defined. PF-keys 13 to 24
are equivalent to PF-keys 1 to 12, respectively.

- 63—

Natural Construct Administration and Modeling User’s Manual

Field

Description (continued)

NAMED

Help indicator

Underscore
character

Of indicator

Disable
indicator

Scroll indicator

PF-key names for the corresponding functions or the
SYSERR numbers that supply the names. The current
names are displayed on the right (main, retrn, quit, etc.).

Because PF-key settings are part of the user interface, you
can specify a SYSERR number from the CSTLDA file as
the PF-key name. For example, SYSERR number *0031.5
corresponds to the English text, “main”. If you specify
*0031.5 in one of the NAMED fields, the corresponding PF-
key name is “main”.

Character used to indicate that help is available for a panel
field (the default is *) or the SYSERR number that supplies
the character. The indicator is placed in a separate prompt
to the right of the input field.

One- to 4-character set used to create the underscore line
for panel text (the default is ----) or the SYSERR number
that supplies the character set.

The specified set is repeated until all spaces are filled (80,
by default). For example, if “----” is specified, the
underscore line is displayed as follows:

Or if “++” is specified, the underscore line is:

I S S I o SR S S o e e

Character(s) used to indicate the current panel and the
number of additional panels (the default is “of” as in “1 of
2”) or the SYSERR number that supplies the character(s).

Character used to indicate that an option is unavailable on
a panel (the default is -) or the SYSERR number that
supplies the character.

Character(s) used to indicate that scrolling is available for

a field on a panel (the default is >>) or the SYSERR
number that supplies the character(s).

— 64—

Using the Administration Subsystem

Field

Description (continued)

Position
indicator(s)

Dynamic Attributes

Intensify
Blue
Green
White
Pink
Red
Turquoise
Yellow
Special Hardware
Blinking
ITtalic
Underline

Reverse video

Characters used to indicate a position in a series of
positions (the defaults are 1 to 10) or the SYSERR number
that supplies the characters. If you are not using SYSERR,
change the default characters by typing the new characters
on the lines below this field.

Default dynamic attributes. You can specify up to four
attributes, one of which must be the return to normal
display attribute (see the description for the Default return
field). The attributes are:

Character used to intensify text.

Blue display for color terminals.

Green display for color terminals.

White display for color terminals.

Pink display for color terminals.

Red display for color terminals.

Turquoise display for color terminals.

Yellow display for color terminals.

Options available for terminals with special hardware:
Support for blinking option.

Support for italic option.

Support for underline option.

Support for reverse video option.

— 65—

Natural Construct Administration and Modeling User’s Manual

Field Description (continued)

Note: Because of hardware restrictions, you may not be able to
use all the options listed. For information about each
attribute, see the section on the DY session parameter in
the Natural Reference Manual.

Default return Character used to return to normal (default) display; the
default is >. A character must be specified in this field.

Compare Menu Function

When you invoke the Compare Menu function, the Compare menu is displayed:

CSDCMVF Nat ur al Construct CSDCMVIFO
Aug 08 Conpare Menu 1 of 1

Functi ons

M Conpare Mddel s
F Conpare Franes

? Help
Ret urn
Function _
Command
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit mai n

Compare Menu

Use the functions available on this menu to compare the definitions for two models
or two series of models (using the Compare Models function), or compare two code
frames or two series of code frames (using the Compare Frames function).

— 66 —

Using the Administration Subsystem

To select a function from this menu:

Type the corresponding one-character function code in the Function field.
Press Enter.

The functions available through this menu are described in the following sections.

For a description of the Help and Return functions, see Help and Return Codes
on Menus, page 36.

Compare Models Function

The following example compares the components of two models or series of models:

CSDCWP Nat ur al Construct CSDCVP10

Aug 08 Conpar e Model s 1of 1
ad New

Model

Dat abase ... 18_ 18_

File 121 121

Version 3.4.1

Command

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -

help retrn quit mai n

Compare Models Panel

Use this panel to compare code frames, model subprograms, etc., for two models or
a series of models. The models can reside in different system files.

— 67—

Natural Construct Administration and Modeling User’s Manual

Comparing the Components of Two Models in Different Files
To compare the components for two models:

Type the name of one model in the first Model field.
Type the name of the other model in the second Model field.

Press Enter.

Note: The Old and New designation does not limit the comparison to old and
new versions of the same model.

The following example compares two models.

CSDCVP Nat ur al Construct CSDCVP10
Apr 22 Conpare Model s 1of 1
ad New

Model BROWSE, BRONBE

Dat abase ... 18__ 18__

File 121__ 147__

Version 3.4.1 4.2.1

Command

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit mai n

The fields on the Compare Models panel are:

Field Description
Model Names of the models you want to compare.
Database Database identification (DBID) numbers for the Natural Construct

system file for the specified models (18 in the example above).

File Natural Construct file numbers for the specified models (121 in the
example above).

Version Natural Construct version numbers for the specified models (3.4.1
in the example above).

—- 68—

Using the Administration Subsystem

Comparing the Components for Two Models in the Same File
To compare the components for two models in the same file:

Type the name of one model in the first Model field.
Type the name of the other model in the second Model field.

Type the DBID number for the Natural Construct system file in the first Database
field.

Type the Natural Construct file number in the first File field.

Press Enter.
The Show Model Differences window is displayed.

Example of comparing two modelsin the samefile

The following example compares the Browse and Browse-Select models in the same
file:

CSDCMPD Natural Construct

Aug 08 Show Mbdel Differences

ad........ 3.4.1 New 4.2.1
BROWSE BROWSE- SELECT

d ear subpr CUsCC CUSLC

Pre-generate CUSCPR CUSLPR

Post-generate CUSCPS CUSLPS

Modi fy Host 2 CcuscwvB CUsLMB

Modi fy Host 4 CUSCMG CUSLMD

Modi fy Host 5 CUSCMG

Modi fy 4 CUSLMF

Frame 1 CSCA? CSLA?

Frame 2 CsCB? CsLB?

Frame 3 Csce? csLe?

Date Jul 31, 1901 Jul 31,1901

Time 10: 09. 510 10: 09. 510

User SAG SAG

Example of Comparing Two Models in the Same File

— 69—

Natural Construct Administration and Modeling User’s Manual

This window displays the following information:
Natural Construct version numbers

Names of the models that are being compared
Names of the model subprograms used by the models
Names of the code frames used by the models

Date the models were created or last saved

Time the models were created or last saved

User IDs of the users who created or last saved the models

Compare a Range of Models with the Same Name in Two Files
To compare a range of models with the same name in two different files:

Type the starting value for the range in the first Model field.

The starting value can be the name of a model or the first few characters in the
name of a model. You can also limit the range by entering the wildcard character
(*) with the model name. For example, if you enter Browse*, all the Browse models
are compared.

For information about using wildcard characters, see Wildcard Selection, page
112, in Natural Construct Generation User’s Manual.

Type the DBID number for the first range of models in the first Database field.
Type the DBID number for the second range in the second Database field.

Type the Natural Construct file number for the first range of models in the first
File field.

Type the Natural Construct file number for the second range in the second File
field.

Press Enter.
The Show Model Differences window is displayed.

—-70-

Using the Administration Subsystem

Example of comparing models with the same namein two files

The following example compares the Browse model in file 116 (3.3.2 version) to the
Browse model in file 120 (3.4.1 version):

CSDCMPD Natural Construct
Aug 08 Show Model Differences
ad........ 3.3.2 New 4.2.1
BROWSE BROWSE
Description BROMABE Pr ogr am (BR) *0200. 1
Save subpr CUSCGST CUSCs
Pre-generate CUSCGPR CUSCPR
Post-generate CUSCGPS CUSCPS
Document CUSCDOCL CUS- D
Modi fy 1 CUSCVA
Modi fy 2 CusCvB
Modi fy 3 Ccuscve
Frame 1 CUBANNER CSCA?
Frame 2 CUSCDA CSCB?
Frame 3 CuscclL Csce?
Frame 4 Cuscez
Frame 5 CUSCC3

Example of Comparing Models with the Same Name in Two Files

—71-

Natural Construct Administration and Modeling User’s Manual

Compare Frames Function

The following example shows the Compare Frames panel:

CSDCWP Natur al Construct CSDCVP20

Aug 08 Conpare Franes 1of 1
ad New

Model

Frame o -

Dat abase ... 18_ 18_

File 121 121

Version 3.4.1

Command

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -

help retrn quit mai n

Compare Frames Panel

Use this panel to compare code frames. The models that contain the code frames
can reside in different system files.

You can also use the Code Frame Compare utility to compare all code frames for a
model and all nested code frames for that model. The results are presented code
frame by code frame.

Note: The Old and New designation does not limit the comparison to old and
new versions of the same model or code frame.

— 72—

Using the Administration Subsystem

Y

ga b W N B

Compare Two Code Frames
To compare two code frames:

Type a code frame name in the first Frame field.

Type a code frame name in the second Frame field.

Type the DBID for the first code frame in the first Database field.
Type the DBID for the second code frame in the second Database field.

Type the Natural Construct file number for the first code frame in the first File
field.

Type the Natural Construct file number for the second code frame in the second
File field.

Press Enter.
The Summary Report window is displayed.

Example of comparing two code frames

The following example compares the CUBADA code frame in file 116 (3.3.2 version)
to the CBAA9 code frame in file 121 (3.4.1 version):

CSDCVPFD Nat ural Construct CSDCWP
Sunmary Report

ad version 3.3.2 New version 3.4.1
Frame CUBADA Frame CBAA9
ad New Mat ched Del et ed Inserted Comment s
284 292 284 0 8 Frames do not match

Press ENTR to continue or any PF-key to retrn

Example of Comparing Two Code Frames

— 73—

Natural Construct Administration and Modeling User’s Manual

Note: The code frames compared can be different code frames in the same file,
the same code frames in different files, or different code frames in differ-
ent files.

For information about comparing code frames in batch mode, see Additional Util-
ities, page 492.

The Summary Report window displays the following information:

Version numbers

Number of lines for each code frame

Number of lines that match

Number of lines deleted from the first code frame

Number of lines inserted in the second code frame

Whether the code frames match (in this example, they do not match)

— 74—

Using the Administration Subsystem

For a line-by-line comparison, press Enter:

Cct 07 Nat ural Construct 04: 15 PM
Conpar e Franes PAGE: 1
ad version 3.3.2 New version 4.2.1
CUBADA/ CBAA9 TC
+ G -BAN? F
= DEFI NE DATA
= GDA- SPECI FI ED 1
= 33 nore equal lines __
= ET- SPECI FI ED 2
= 01 #HOLD- COUNT(P3) "
+ 01 #WRI TE- LI NE(A30)
-_— *
= Secondary file 1 key for ADABAS, VSAM DB2 *
= 161 nore equal lines __
= 01 #1 NPUT1
= KEY- 1 S- REDEFI NED OR KEY- | S- COVPOUND 3
+ 02 #1 NPUT1- FI ELDS(&KEY- NAT- FORMAT) "
+ 02 REDEFI NE #| NPUT1- FI ELDS "
= CUBAGRED REDEFI NE- | NPUT- KEY N "
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
frwd retrn top hcopy frwd

Code Frame Compare Utility Panel

The lines in the two code frames that match are marked with an equal sign (=). The
lines that are in the first code frame, but not the second, are marked with a minus
sign (-). The lines that are in the second code frame, but not the first, are marked
with a plus sign (+).

To scroll forward (down) through the information, press Enter or PF8 (frwrd).
To return to the first line, press PF5 (top).

To return to the Compare Frames panel, press PF2 (retrn).

Note: After the last page is displayed, you are automatically returned to the
Compare Frames panel.

— 75—

Natural Construct Administration and Modeling User’s Manual

To print a hardcopy of the Code Frame Compare Utility panel, press PF6 (hcopy).

For more information about printing a hardcopy of a code frame, see the Print
Saved Code Frame Function, page 61.

Comparing a Range of Frames with the Same Name in Two Files
To compare a range of code frames with the same name in two different files:

Type the starting value for the range in the first Frame field.

The starting value can be the name of a code frame or the first few characters in
the name of a code frame. You can also limit the range by entering the wildcard
character (*) with the code frame name. For example, if you enter CFM*, all the
code frames that begin with CFM are compared.

For more information regarding wild cards, see Wildcard Selection, page 112, in
Natural Construct Generation User’s Manual.
Type the DBID number for the first range of code frames in the first Database field.

Type the DBID number for the second range of code frames in the second Database
field.

Type the Natural Construct file number for the first range of code frames in the
first File field.

Type the Natural Construct file number for the second range of code frames in the
second File field.

Press Enter.
The Frame Compare Facility panel is displayed.

— 76 —

Using the Administration Subsystem

Example of comparing a range of frames with the same namein two files

The following example compares the code frames in file 116 to those in file 121:

CSDCVPF Nat ural Construct CSDCMFO

Oct 07 Sel ect Franes 1 of 1
Fr ame ad New

_ CGvA9 DATE: 01-10-03 09: 46 DATE: 01-09-27 15:03

ece.] DATE: 01-09-30 09: 55 DATE: 01-09-27 15:03

_ CGPA9 DATE: 01-09-30 09: 55 DATE: 01-09-27 15:03

_ CGRA9 DATE: 01-09-30 09: 55 DATE: 01-09-27 15:03

_ CGSA9 DATE: 01-09-30 09: 55 DATE: 01-09-27 15:03

_ CHDA9 DATE: 01-09-30 09: 55 DATE: 01-09-27 15:03
CVDA9 Does not Exi st DATE: 01-09-27 15:03

_ CWNA9 DATE: 01-09-30 09:55 DATE: 01-09-27 15:03

_ CN-BAN9 DATE: 01-09-30 09: 55 DATE: 01-09-27 15:03

_ CNDA9 DATE: 01-09-30 09:55 DATE: 01-09-27 15:03

_ CNQA9 DATE: 01-09-30 09:55 DATE: 01-09-27 15:03

_ COBA9 DATE: 01-10-07 11:12 DATE: 01-09-27 15:03

Code frame nanme CFM___

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF

help retrn bkwrd frwd

Posi tion cursor or enter screen value to sel ect

Frame Compare Facility Panel

This panel is similar to the Model Compare Facility panel and functions in the
same manner. For a description of this panel, see Compare a Range of Models
with the Same Name in Two Files, page 70.

To display the comparison data for any code frame, enter C in the Selection Column
field for that code frame. The Show Model Differences window and then the Code
Frame Compare Utility panel are displayed. For a description of the Show Model
Differences window and the Code Frame Compare Utility panel, see Compare
Two Code Frames, page 73.

—77-

Y

N o o~ WON P

Natural Construct Administration and Modeling User’s Manual

Comparing All the Frames Used by Two Models
To compare all the code frames used by two models:

Type the name of the first model in the first Model field.

Type the name of the second model in the second Model field.

Type the DBID number for the first model in the first Database field.
Type the DBID number for the second model in the second Database field.
Type the file number for the first model in the first File field.

Type the file number for the second model in the second File field.

Press Enter.
The Show Model Differences window is displayed.

Example of comparing all the frames used by two models

The following example compares the code frames in the Browse model with the
code frames in the Browse-Select model:

CSDCMPFD Nat ural Construct CSDCMPFO
Aug 09 Sunmmary Report 1of 1
ad version 3.4.1 New version 3.4.1
Model BROWBE Model BROWSE- SELECT
ad New Mat ched Del et ed I nserted Comment s
576 772 396 180 376 Frames do not natch
Press ENTR to continue or any PF-key to retrn

Summary Report Window

To display a line-by-line comparison, press Enter. For more information, see Com-
pare Two Code Frames, page 73.

— 78 —

Using the Administration Subsystem

Drivers Menu Function

When you invoke the UDrivers Menu function, the Drivers menu is displayed:

CTEMENU Natur al Construct 4.4.1 CTEMNMD
Cct 31 Drivers Menu 1of 1
Functions

P Predict-Related Drivers Menu
N Natural-Related Drivers Menu
M M scel | aneous Drivers Menu

? Help
Return
Function -
Command
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit | ang

Drivers Menu

Use this menu to access various utility subprograms supplied with Natural Con-
struct. The drivers used to invoke the utilities are grouped according to what kind
of subprogram they access. For a description of each menu function and the sub-
program it invokes, refer to the applicable Drivers Menu Option section in
Chapter 20, External Objects, page 347.

— 79—

Natural Construct Administration and Modeling User’s Manual

Multilingual Support for Natural Construct

You can install Natural Construct in static (single) or dynamic (multiple) language
mode. If dynamic language mode is installed, you can change your *Language val-
ue at runtime and display text in another supported language. You can also add
translations for the supplied text or change the supplied text to suit your organiza-
tion’s standards.

Note: For information about installing Natural Construct in static or dynamic
language mode, see the Natural Construct Installation and Operations
Manual for Mainframes.

In dynamic language mode, all text displayed by Natural Construct is supplied
from the following libraries in SYSERR:

¢ CSTLDA, for all panel and window text
¢ CSTMSQG, for all message text

Natural Construct checks the value of the *Language variable to determine what
language to display and retrieves the text for that language from the appropriate
file.

» To add text for another language or modify the supplied text, use one of the
following methods:

¢ Use the SYSERR utility to add translations or modify the supplied text for all Nat-
ural Construct screens. Using the SYSERR utility is the quickest way to translate
text on all panels.

¢ Use the Administration subsystem in translation mode to dynamically add trans-
lations or modify the supplied text. Typically, you would use translation mode to
fine tune translations that were added using the SYSERR utility. This allows you
to view the translation in the context of the entire panel.

For more information about SYSERR, see the Natural Utilities Manual. For more
information about Translation mode, see PF12 (lang), page 81.

— 80—

Using the Administration Subsystem

Note: To define the text for another language, you must first change the *Lan-
guage value in the Language Preference window.

PF12 (lang)

To change languages, press PF12 (lang) on the Administration main menu. The
Language Preference window is displayed:

CSULPS Nat ural Construct CSULPSO
Aug 08 Language Preference 1of 1
Nunber Languages

1 Engli sh

2 Deut sch (Ger man)

3 Francai s (French)

4 Espagnol (Spani sh)

5 Italiano (ltalian)

6 Dut ch

7 Tur ki sh

8 Dani sh

9 Nor wegi an

10 Al bani an
Nunber ... __
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - -

help retrn bkwd frwd

Position cursor or enter screen value to select

Language Preference Window

» To select a language currently displayed in this window:
1 DMove the cursor to the line containing the desired language.

2 Press Enter.
The main menu is displayed in the selected language.

English (*Language 1) is the default language for Natural Construct. Although
other languages are listed in the Language Preference window, you must add the
translations for those languages in SYSERR.

—81-

Natural Construct Administration and Modeling User’s Manual

If you do not provide translated text for a selected language, Natural Construct de-
termines what language to display based on a user-defined hierarchy of language
numbers (defined in the DEFAULT-LANGUAGE field in the CNAMSG local data
area). For more information about setting up the language hierarchy, see the Nai-
ural Construct Installation and Operations Manual for Mainframes.

— 82—

Using the Administration Subsystem

Administration Main Menu in Translation Mode

To help you maintain the text for Natural Construct panels, windows, and messag-
es, the Administration subsystem is also available in translation mode. In
translation mode, you can change the text for all Natural Construct screens. For
example, you can create multilingual panels by translating the text to another lan-
guage or you can modify the text to reflect your organization’s standards.

For information about invoking the Administration main menu in translation
mode, see Invoking Natural Construct, page 30.

The following example shows the Administration main menu in translation mode:

CSDMAI N Nat ur al Construct CSDMNMD
Aug 08 Admi ni stration Main Menu 1of 1
Functi ons

M Mai ntai n Mdel s

F Code Frane Menu

S Mai ntai n Subprograns

R Maintain Control Record
C Conpare Menu

D Drivers Menu

H Help Text Main Menu

G Generation Main Menu

?

Hel p
Ret urn
Function _
Command
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit | ang

Administration Main Menu in Translation Mode

Notice that functions are available to access the Help Text and Generation main
menus in translation mode.

— 83—

Natural Construct Administration and Modeling User’s Manual

Note: Although the panels look the same in translation mode, they do not per-
form the same functions. For example, edit checks are not performed on
input data. We recommend that you do not use translation mode for main-
tenance functions (such as defining a new model); use translation mode
for translation functions, such as editing text in the current language or
creating multilingual specification panels and messages.

The following sections describe how to use translation mode to modify the text on
panels, windows, and messages.

Using Translation Mode

Translation mode uses the same series of panels and windows throughout Natural
Construct. All translatable text is cursor sensitive. When you select it and press
Enter, the Translate Short Message window is displayed. You can identify trans-
latable text by the difference in color or intensification.

Note: Ifyou are using Natural Connection on a PC to access Natural Construct,
you can display the Translate Short Message window by double-clicking
with the mouse on translatable text.

You can translate two types of text:

¢ Screen text (text displayed on panels and in windows), which is supplied by the
CSTLDA file in SYSERR

¢ Message text, which is supplied by the CSTMSG file in SYSERR

Each Natural Construct panel or window is associated with a local data area (LDA)
that initializes the screen prompt variables. In translation mode, these variables
are initialized to a SYSERR number and the actual text values are retrieved at
runtime (based on the current value of the Natural *Language system variable).

-84 -—

Using the Administration Subsystem

Note: You can use SYSERR numbers for some or all screen prompts. If you spec-
ify text as an initial value, Natural Construct displays the text as entered
and the prompt cannot be dynamically translated.

When you use a SYSERR number instead of the actual text, Natural Construct re
trieves the corresponding text from the CSTLDA library (for prompts) or the
CSTMSG library (for messages) in SYSERR. All changes to the values stored in
SYSERR are automatically applied to the panels and messages the next time they
are invoked.

Within SYSERR, you can provide text in different languages for each SYSERR
number. For even greater reusability, you can use a variable (such as :1:) with the
text (for more information, see the Statements — REINPUT section in the Nai-
ural Reference Manual). Typically, the :n: variables are used in messages and the
prompt is substituted for the :n: value. The actual text displayed depends on the
value of the *Language variable for the user who invoked the panel.

Translation mode allows you to change the text in SYSERR without leaving Natu-
ral Construct. You can change the text displayed on the Administration main
menu, as well as on panels and help or selection windows for each function avail-
able through the Administration main menu. To change screen text in the
Generation or Help Text subsystems, invoke the Generation main menu (G func-
tion) or Help Text main menu (H function) functions from the Administration main
menu in translation mode.

Depending on the current value of *Language, you can either edit the existing text
or add the translations for another language. The following sections describe how
to perform these tasks.

- 85—

Natural Construct Administration and Modeling User’s Manual

Editing Text in the Current Language

Using translation mode, you can dynamically edit the text displayed on Natural
Construct panels in the current language — without invoking the Natural map or
code editor. For example, you can change the field prompt values to match your or-

ganization’s conventions.

The following example shows the Maintain Models panel (M function) in transla-

tion mode:
CSDFM Nat ur al Construct CSDFMD
Aug 08 Mai nt ai n Mbdel s 1of 1
Action __ ABCDMNPR
Model ...
Description
PDA nane St at us wi ndow

hel p

Type

Code frame(s)
Modi fy server specificatn

Read specification
Pre-generation
Command

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PFO- - - PF10- - PF11- - PF12-- -

Modi fy client specificatn

Cear specification

Comment start indicator

Conment end indicator

Post -generation
Save specification
Docunent specification ...

retrn quit frame

mai n

Maintain Models Panel in Translation Mode

— 86 —

Using the Administration Subsystem

» To edit text on the Maintain Models panel:

1 Move the cursor to the prompt text you want to change (not a blank input line).

2 Press Enter.
The Translate Short Message window is displayed:.

CSUTLATE Nat ural Construct
Aug 08 Transl ate Short Message 1of 1

Language Short Message (CSTLDA1116)
———————————— oo Lo 20+ 30k A+ B LB

Engli sh Action/ Subprogram | +26

Translate Short Message Window

This window provides quick access to the SYSERR numbers and text.

Any changes you make to the text in this window are automatically applied in SY-
SERR, so be careful when changing the text for SYSERR numbers that are used on
other panels.

Note: The “/+26” value in this window indicates there are up to 26 characters
available for each text segment that is to be translated.

To edit text in help or select in windows, invoke the window and edit as described.

Translate Text to Another Language

Use translation mode to add translations for prompt text on Natural Construct
panels and windows. For example, you can create specification panels in French
(*Language 3).

87—

Natural Construct Administration and Modeling User’s Manual

» To translate text to another language:

1

Invoke the Administration main menu in translation mode. For more information,
see Invoking Natural Construct, page 30.

Press PF12 (lang).
The Language Preference window is displayed. For a description of this window,
see PF12 (lang), page 81

Move the cursor to the line containing the word, “French”, and press Enter.
The Administration main menu is displayed.

Display the panel you want to translate (in this example, the Maintain Models
panel).

Put your cursor over the prompt text you want to change (not a blank input line).

Press Enter.
The Translate Short Message window is displayed:

CSUTLATE Nat ural Construct
Cct 07 Transl ate Short Message 1of 1

Language Short Message (CSTLDA1116)
———————————— oo Lo 20+ 30k A+ B LB

Engli sh Action/ Subprogram / +30
Francai s

Translate Short Message Window on the Maintain Models Panel

Type the French equivalent under the English text (Action/Subprogram in this
example).

Note: The “/+30” value in this window indicates that you can use up to 30 char-
acters for each text segment that is to be translated.

Press Enter.
You are returned to the Maintain Models panel and the translated text is
displayed.

—-88-—

Using the Administration Subsystem

Repeat steps 5 through 8 until all text is translated.
You can translate text on any Natural Construct panel or window by invoking that
panel or window and performing the translation procedure (steps 5 through 8).

To translate text on the Browse specification panels. For example, perform steps 1
through 3 on the previous page, and then:
Type “G” in the Function field on the Administration main menu.

Press Enter.
The Generation main menu is displayed in translation mode.

Type “M” in the Function field.
Type “Browse” in the Model field.

Press Enter.
The first specification panel for the Browse model is displayed.

Perform the translation procedure (repeat steps 5 through 8).

- 89—

Natural Construct Administration and Modeling User’s Manual

User Exit Subprograms to Implement Security

Natural Construct supplies user exit subprograms for the Administration and
Help Text subsystems. Use these subprograms to implement security or restrict ac-
cess to various Natural Construct modules (models, code frames, model
subprograms, help text members).

If these subprograms exist in a library within the specified subsystem, Natural
Construct invokes the applicable subprogram to enforce security when a user se-
lects a module and action. The subprogram grants or denies access based on the
specified user ID privileges. The supplied user exit subprograms are:

Function Subprogram Library
Model alias name support CSXAUEXT SYSLIBS
Generation main menu (before the post- CSXCNAME SYSLIBS
generation subprogram is invoked)

User-defined default values for generation CSXDEFLT SYSLIBS
Administration main menu CSXDUEXT SYSCST
Code Frame menu CSXFUEXT SYSCST
Help Text main menu CSXHUEXT SYSLIBS
Maintain Model CSXMUEXT SYSCST
function

Generation main menu (after all substitution CSXPSCHG SYSLIBS

values are generated into the program)

Maintain Subprograms function CSXSUEXT SYSCST

The Natural Construct installation tape contains samples of these user exit sub-
programs. The sample subprograms are initially loaded into the SYSCSTX library,
which is created during installation. To use a user exit subprogram, modify it for
your installation and then copy it to the library indicated above.

—~90-—

Using the Administration Subsystem

Note: Keep a backup copy of your modified user exit subprograms.

Defining Default Specifications

o Ol

Y

w N

You can define default specifications for individual models on an application (li-
brary) level — and use these defaults to further automate the generation process.

Note: This functionality does not apply to the statement models or the Object-
Maint-PDA and Object-Maint-PDA-R models.

To define default specifications for a model:

Type “M” in the Function field on the Generation main menu.
Type “DEFAULT” in the Module field.

Type the name of the model (for which you want to define defaults) in the Model
field.

Press Enter to display the first specification panel and define your default
specifications.

Continue defining defaults on the remaining specification panels (if there is more
than one) until you are returned to the Generation main menu.

Type “S” in the Function field.

Press Enter to save your defaults.

To modify previously-defined default specifications for a model:

Type “R” in the Function field on the Generation main menu.
Type “DEFAULT” in the Module field.

Type the name of the model (for which you are modifying defaults) in the Model
field.

Press Enter.
Natural Construct reads the specifications for the model.

—91-—

Natural Construct Administration and Modeling User’s Manual

Type “M” in the Function field.

Press Enter to display the first specification panel and modify the default
specifications.

Continue modifying defaults on the remaining specification panels (if there is more
than one) until you are returned to the Generation main menu.

Type “S” in the Function field.

Press Enter to save your modifications.

Note: While you are defining default parameters, the specification edits are not
invoked.

Natural Construct reads the model defaults into the editor when the clear subpro-
gram is invoked for a model. This occurs whenever you invoke the Clear
Specification and Editor function while a model name is specified, or invoke the
Modify Specifications function for a new model name.

The names of the modules that store the default specifications are derived from the
names of the model clear subprograms. For example, if the clear subprogram for
the Maint model is CUFMC, the default specifications module is C@FMC.

To maintain unique default specification modules for each model, the supplied Nat-
ural Construct models have their own unique clear subprograms.

Note: If you have custom models that share common clear subprograms, you
should make copies of the models, ensure that each model has a unique
name, and provide a corresponding clear subprogram with a unique name
for each one.

Defaults specified at the application level override defaults specified in the PRO-
VIDE-DEFAULT-VALUES user exit for the clear subprogram. That is, if a default
specification module exists in the current library for a model, Natural Construct
uses these defaults rather than the defaults specified in the user exit. If no default
module exists in the current library for a model, Natural Construct uses the de-
faults specified in the user exit.

—92—

Using the Administration Subsystem

On the Generation main menu, the Read Specifications, Modify Specifications,
Save Generated Source, List Generated Modules, and Clear Edit Buffer functions
support specification defaults. The Invoke User Exit Editor, Generate Source, Test
Generated Source, Edit Generated Source, and Stow Generated Source functions
do not support default specifications.

You can modify the DEFAULT keyword by changing the value of the DEFAULT-
SPECIFICATION-KEYWORD parameter in the CSXDEFLT subprogram. After
modifying this value, re-catalog CSXDEFLT and use the SYSMAIN utility to copy
the object code into the SYSLIBS library.

Using the CSXDEFLT Subprogram

This method provides default values for model parameters that can be overridden
on the model specification panels, as well as internal model parameters the devel-
oper cannot change.

The supplied models retrieve many of the default parameter values by issuing a
CALLNAT to the CSUDEFLT subprogram. Prior to returning the defaults, CSU-
DEFLT checks to see whether the values have been overridden by the user-defined
CSXDEFLT subprogram. If so, the overridden values are returned to the model.

Normally, the model’s clear subprogram requests the default values; the returned
values are copied to the model parameter data area (PDA). This way, the overhead
of retrieving these defaults is only incurred when the user switches to another
model or issues a Clear request.

To simplify the interface to CSUDEFLT, Natural Construct supplies three param-
eterized copycode members. The copycode member you use depends on the format
of the field you are providing defaults for:

Copycode Member Description

CCDEFLTA Provides default values for alphanumeric fields.
CCDEFLTL Provides default values for logical fields.
CCDEFLTN Provides default values for numeric fields.

—~ 93—

Natural Construct Administration and Modeling User’s Manual

Each copycode member accepts two parameters. The format of the second param-
eter determines which of the copycode members to use:

The first parameter identifies the default value; this value is passed to CSXDEFLT
as the CSADEFLT.PARM-NAME variable.

The second parameter defines the variable to which the default value is assigned.
This variable is assigned the value returned in CSADEFLT.PARM-VALUE.

Example of retrieving an alphanumeric default value

/*
/* Assign default date edit nask to (al phanuneric) nodel PDA variable
| NCLUDE CCDEFLTA ''' DATE- EDI T- MASK' ' ' ' CUMNPDA. #PDA- DATE- EDI T- MASK'

During installation, CSXDEFLT is installed in the SYSCSTX library. For testing
purposes, copy CSXDEFLT into the SYSCST library. For production purposes,
copy CSXDEFLT into the SYSLIBS library.

For a list of parameters that can be modified by CSXDEFLT, see the CSUGETDF
program. CSUGETDF also indicates which parameters are currently being over-
ridden by CSXDEFLT. A description of these parameters is provided in the source
code for CSXDEFLT.

Using Library-Specific Defaulting

This method provides default values for model parameters that appear as input
fields on the specification panels for a model.

You can provide default parameter values for a model by assigning the default set-
tings within a specified library. This method only applies to parameters supplied
through input fields on the specification panels for the model. For information
about providing library-specific defaulting, see Defining Default Specifica-
tions, page 91.

94—

Using the Administration Subsystem

Using CSXCNAME Overrides

This method provides default values for model parameters that can be overridden
by changing one source code string to another.

You can globally override defaults for all modules generated by a model by supply-
ing the CSXCNAME user exit subprogram. If present, this subprogram is invoked
as part of the post-generation process to apply any CHANGE commands to the gen-
erated source code.

To use this method, ensure that the stacked CHANGE string uniquely identifies a
string (since the change will apply even if the CHANGE string is embedded in a
longer string). To set the first parameter to null, stack the third parameter.

Example of using the CSXCNAME subprogram override

STACK TOP DATA FORMATTED ' CCSETKEY' ' MYSETKEY'
STACK TOP DATA FORMATTED ' (EMFLLL MM DD)' ' ' 'X [* Set to null
END

— 905 —

Natural Construct Administration and Modeling User’s Manual

Assigning Corporate Defaults

You can define default values at the corporate level. For example, you can use the
export data function to default information such as the export work file number
and the delimiter character. To implement the defaulting mechanism, see the fol-
lowing code example. The example illustrates how a work file number and column
delimiter values are defaulted.

Example of assigning corporate defaults

** We want to default two internal variables: #WRKFI LE-NR and
** #COLUWN- DELI M TER

DEFI NE DATA
LOCAL USI NG CSADEFLT /* Must include user default
/* interface LDA
LOCAL
01 #WORKFI LE- NR(N2) | NI T<5> /* Assign fallback default "5"

01 #COLUWN-DELI M TER(A1) INIT<','>/* Assign fallback default ", "
01 #PERFORMANCE(L) I NI T<FALSE> /* Assign fallback default
/* "FALSE"
END- DEFI NE
** Assign corporate default overrides if available
| NCLUDE CCDEFLTN '' ' WORKFI LE- NUMBER- PC- DOWN' ' ' #WORKFI LE- NR
| NCLUDE CCDEFLTA ''' WORKFI LE- DELI M TER- CHAR ' ' #COLUMN- DELI M TER
I NCLUDE CCDEFLTL ''' PERFORMANCE '' #PERFORMANCE
** Note that there are 3 separate | NCLUDE nenbers: one for nuneric
** defaults (CCDEFLTN), one for al phanunmeric defaults (CCDEFLTA), and
** one for |ogical defaults (CCDEFLTL)
** Continue normal processing and the initial values may have been
** overridden by a corporate-supplied defaulting routine.

Note: To apply the changes corporation-wide, you must add the initial variable
name and its initial value in the CSXDEFLT user exit subprogram.

Note: Theinternal defaulting mechanism may be affected when you use this de-
faulting mechanism to initialize the specification panel default keyword.
Use the same keyword for both mechanisms. The specification panel de-
fault keyword overrides the internal default keyword.

— 906 —

Using the Administration Subsystem

Using Predict Keywords

You can use Predict keywords to define default values for some model input param-
eters (for example, primary key fields, logical hold fields, and object descriptions).
If default values have been specified in Predict, Natural Construct fills in the de-
fault values when the model is invoked. This reduces the number of specifications
developers must provide when using the model.

Defining a Default Primary Key

You can define a default value for a primary key by specifying a descriptor name
in the Sequence field for the file in Predict. Natural Construct observes the follow-
ing priorities when defaulting a primary key name for a file:

If the value of the default Sequence field for the file is unique and a valid
descriptor, Natural Construct uses this value as the primary key.

If the value of the default Sequence field is not unique, Natural Construct reads
through the file and uses a unique descriptor field value as the primary key.

If the file does not have a unique descriptor field, but has only one descriptor field,
Natural Construct assumes the field value is unique and uses it as the primary
key.

—97-—

Natural Construct Administration and Modeling User’s Manual

Defining a Default Logical Hold Field

You can define a default value for the logical hold field by attaching a keyword
called “HOLD-FIELD” to the field in Predict. (You may have to first define the
HOLD-FIELD keyword in Predict using Keyword Maintenance.)

Natural Construct observes the following priorities when defaulting a hold field
name for a file:

If the HOLD-FIELD keyword is attached to a field that meets the format criteria
for a hold field, Natural Construct uses this field as the logical hold field.

If a field name contains any of the following strings:
HOLDFIELD

HOLD-FIELD

HOLD_FIELD

TIMESTAMP

TIME-STAMP

TIME_STAMP

LOGCOUNTER

LOG-COUNTER

LOG_COUNTER

If the field meets the format criteria for a hold field, Natural Construct uses this
field as the logical hold field.

Defining a Default Object Description

You can define a default value for the object description by specifying the default
value in the Literal Name field for the file in Predict. Natural Construct uses this
value as the object description when the file is referenced in messages. If the value
is “Customer”, for example, messages are displayed as “Customer not found” or
“Customer displayed”.

— 98—

USING THE CODE FRAME EDITOR

This chapter describes the purpose and functions of the Code Frame editor. A code
frame is the basic building block of a model. It provides a rudimentary outline of
the code generated by the model. Code frames may contain condition codes to gen-
erate blocks of code conditionally. They may also contain subprograms used to
generate more complex blocks of code.

This chapter describes how to invoke the Code Frame editor and the command ex-
ecution order. It also describes applicable line and edit commands and how to
recover edits if your session is interrupted.

The following topics are covered:
¢ Invoking the Code Frame Editor, page 100
¢ Using the Code Frame Editor, page 102

—~ 99—

Natural Construct Administration and Modeling User’s Manual

Invoking the Code Frame Editor

» To invoke the Code Frame editor from the Administration main menu:

Type “F” (Code Frame Menu function) in the Function field.

Press Enter.
The Code Frame menu is displayed:

CSMVAI N Nat ur al Construct CSMWNMD
Jun 20 Code Frame Menu 1of 1

Functi ons

E Edit Code Frane

S Save Code Frane

L List Code Franes

P Purge Code Frane

C Clear Edit Buffer

H Print Saved Code Frane

N
T
©

°

Function
Code Franme __
Description

Command
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit mai n

Code Frame Menu

3 Type “E” in the Function field on the Code Frame menu.

—100 -

Using the Code Frame Editor

4 Press Enter.
The Code Frame editor is displayed:

Code Frame Sl ZE
Description FREE 61361
> >+ ABS X X-Y _ S L

Code Frame Editor

You can also invoke the Code Frame editor from the:
¢ Command line, by entering “E” and the code frame name separated by a slash (/)
¢ Maintain Models panel, by selecting a code frame and pressing PF4

To edit an existing code frame, type the name of the code frame in the Code Frame
field before invoking the Code Frame editor. If you do not specify the name of a code
frame, the editor is empty when displayed.

Note: For information about the functions available through this menu, see
Code Frame Menu Function, page 57. For information about modify-
ing the supplied code frames, see Edit Code Frame Function, page 58.

-101 -

Natural Construct Administration and Modeling User’s Manual

Using the Code Frame Editor

The following example shows a code frame in the Code Frame editor:

Code Frame CSLC9 SI ZE 29281

Description Browse- Sel ect * nodel subroutines FREE 29520

> >+ ABS X X-Y _ S408 L1
6....+....7.. TC

Top...+ ...l k20 3 AR UB
*

* Subroutines (in al phabetical order).

*

CHECK- W LD- CHARACTER 1

L
DEFI NE SUBROUTI NE CHECK- W LD- CHARACTER
L R

*

* Check for wild characters in the input key and
* reset mninmumand maxi nun values for the key accordingly
RESET #W LD- CHAR #LAST- POS
FOR #WNDX = 1 TO 3

EXAM NE #| NPUT. #CHAR- ARRAY(*) FOR

CDW LDA. #W LD- CARD- CHARS(#W NDX) G VI NG | NDEX #FI RS- POS(#W NDX)

END- FOR
/* Find the first wild character
FOR #WNDX = 1 TO 2

| F #FI RS- POS(#W NDX) = 1 THRU #FI RS- POS(#W NDX + 1) OR

A L 20k Bl kA o+ BBk T T

Example of a Code Frame

The Code Frame editor supports all generic Natural edit commands except the
RUN, CHECK, TEST, STOW, and SAVE commands. This editor has no line num-
bers, but it does have two extra fields to the right of the edit area: T (Type) and C
(Condition). Natural Construct uses these fields to control the generation process
for each code frame.

-102 -

Using the Code Frame Editor

The fields in the Code Frame editor are:

Field

Description

Code Frame

Description
SIZE
FREE

>

ABS

Name of the code frame that is currently in the editor (the
name specified in the Code Frame field on the Code Frame
menu).

Brief description of the code frame.
Size of the code frame (in bytes).
Number of bytes currently available in the editor.

Command line prompt, at which you can:
¢ Enter “Q”, “QUIT”, or “.” to close the editor

¢ Issue an edit command (for a list of the edit commands,
see Edit Commands, page 110)

Direction indicator. The plus sign (+) indicates that the
ADD, MOVE, COPY, INSERT, and SCAN commands
operate in a forward (from top to bottom) direction. To have
the commands operate in a backward direction (from
bottom to top), type a minus sign (-) over the plus sign.

Edit commands use the direction indicator to determine
whether to place lines before the first line in the editor or
after the last line in the editor. For example, using the
ADD edit command and a + direction indicator adds lines
after the last line in the editor; using the ADD edit
command and a - direction indicator adds lines before the
first line in the editor.

Absolute field, which is used in conjunction with the SCAN
and CHANGE edit commands. When this field is marked,
the system scans for or changes the specified characters,
including those within words. If you specify a blank in this
field, the system scans for or changes the specified
characters only if they are a separate entity (delimited by
blanks or special characters).

-103 -

Natural Construct Administration and Modeling User’s Manual

Field Description (continued)

XY X and Y delimiters. To confine SCAN and CHANGE
commands to code within an X-Y delimited range, mark
this field. Text outside the X-Y range is not affected.

S Total number of lines of code currently in the editor.

L Number of the first line currently displayed in the editor.

—-104 -

Using the Code Frame Editor

Field

Description (continued)

Note:

Editor line type. Valid line types are:

N

Indicates this is a subprogram line and the specified
Natural subprogram is invoked during generation. If
you specify N, the line is automatically formatted as
follows:

Subpr ogram Par anet er : N

Type the name of the subprogram in the Subprogram
field. If the subprogram is invoked more than once or in
multiple code frames, you can specify a constant (which
is placed in the #PDA-FRAME-PARM field of the CU—
PDA parameter data area) in the Parameter field. The
subprogram can test this field to determine where the
subprogram is invoked.

F

Indicates that this is a secondary (nested) code frame
line and the specified code frame is invoked during
generation. The names of nested code frames should all
end with a question mark (?). This naming convention
greatly reduces the time and effort required to modify
code frames.

U

Indicates points where developers can insert user exit
code. (You can specify additional attributes using the .E
command after the line is specified.)

*

Indicates code frame comments, which are not used by
the generated module.

B

Indicates that blank lines are valid and will be
generated into the source area. This line type is used to
explicitly hold blank line positions. Natural Construct
will not change the contents of any B type line. If text is
entered on a B type line, the text is generated; if a B
type line is blank, a blank line is generated.

Natural code does not require blank lines, whereas other
scripting languages use the blank line concept extensively.

—-105 -

Natural Construct Administration and Modeling User’s Manual

Field

Description (continued)

X

Indicates that the text portion of the line must contain
the name of a user exit, and the code in the C field must
be a number from 1 to 9. If the user exit exists in the
User Exit editor when the program is generated, this
line indicates that the condition is true.

Blank

Indicates that this line is constant text and is inserted
directly in the generated program, based on the value in
the C field. Whenever a code frame is updated, Natural
Construct compresses blank lines and lines marked
with B.

Condition level of the corresponding lines. Valid levels are:

n (1-9)

Indicates a new condition for this level. The conditions
are Boolean combinations of the condition constants
specified for the generator. If the condition specified on
the line is true, all subsequent code with quotation
marks (") is included in the generated program. You can
nest conditions by specifying a number greater than 1.
(For information about setting up conditions for your
generators, see Code Frame Conditions, page 135.

Indicates that text on this line is a continuation of the
previous block of code and subject to the last condition
specified.

blank

Indicates that the corresponding line is constant text
and is included unconditionally.

- 106 —

Using the Code Frame Editor

Order of Command Execution

The Code Frame editor executes commands in the following order:
¢ Modifies text.

¢ Executes line commands. Specify in the text area of the editor and precede each
command with a period (.E, for example).

¢ Executes edit commands. Specify at the > prompt (ADD, for example).

The line and edit commands for the Code Frame editor are described in the follow-
ing sections.

Line Commands

You can issue line commands in the Code Frame editor that copy, move, and delete
lines of code. Line commands must be entered in the edit area (not at the > prompt),
begin with a period (.), and start in the first column position of a line. Except for
the .LL command, you should only use line commands on modified code after you
press Enter.

Ifthe direction indicator is a plus sign (+, indicating from top to bottom), the copied,
moved, or inserted lines are placed below the line on which the command is speci-
fied. If the direction indicator is a minus sign (-, indicating from bottom to top), the
lines are placed above the line on which the command is specified.

Note: To avoid shifting the T (Type) and C (Condition) fields, the SHIFT, .J, and
.S commands are not available in the Code Frame editor.

The line commands applicable in the Code Frame editor are:

Command Function

.C(nn) Copies the current line nn times, where nn is the number
of times. The default is one time.

.CX(nn) Copies the line marked X nn times, where nn is the number
of times. The default is one time.

-107 -

Natural Construct Administration and Modeling User’s Manual

Command Function (continued)

.CY(nn) Copies the line marked Y nn times, where nn is the number
of times. The default is one time.

.CX-Y(nn) Copies the block delimited by X and Y nn times, where nn
is the number of times. The default is one time.

.D(nn) Deletes nn lines, where nn is the number of lines. The
default is one line.

.E Specifies additional attributes for user exits. If the
corresponding line is type U (user exit point), you can
specify additional attributes for the user exit by issuing the
.E command.

.G(model, Invokes the Generation subsystem of Natural Construct.

parameters)

I(nn) Inserts nn lines, where nn is the number of lines. The
default is 9 lines; the maximum is 9 lines. The Code Frame
editor suppresses unused lines unless they are marked
with a B line type.

IF (code frame) Inserts the specified code frame on the line below the line
on which the command is specified. The direction indicator
has no effect on this command.

JI(member,startline, Places a member from the current library on to a specified

number of lines)

.L

MX

line in the editor. You can also specify a starting line and
the total number of lines to include.

Restores the line on which the command is specified to its
previous state. (This command is similar to the LET edit
command, but it applies to one line only.)

If the direction indicator is a plus sign (+), this command
moves the line marked X to the line after the one on which
.MX is specified. If the indicator is a minus sign (-), this
command moves the line marked X to the line above the
one on which .MX is specified.

—-108 —

Using the Code Frame Editor

Command

Function (continued)

MY

MX-Y

W(nn)

If the direction indicator is a plus sign (+), this command
moves the line marked with Y to the line after the one on
which .MY is specified. If the direction indicator is a minus
sign (-), this command moves the line marked Y to the line
above the one on which .MY is specified.

Moves the block of lines delimited by the X and Y markers.
If the direction indicator is a plus sign (+), this command
moves the block to the line after the one on which MX-Y is
specified. If the direction indicator is a minus sign (-), this
command moves the block to the line above the one on
which .MX-Y is specified.

Marks the line for the POINT edit command (for more
information, see the POINT command in Positional Edit
Commands, page 112).

Moves the line on which the command is specified to the
top of the panel.

Inserts nn blank lines in the editor, where nn is the
number of lines. The default is 9 lines. Whenever the code
frame is updated, Natural Construct suppresses any
unused lines unless they are marked as B line types.

Marks a line or marks the beginning of a block of lines that
ends with a line marked Y.

Marks a line or marks the end of a block of lines that begins
with a line marked X.

-109 -

Natural Construct Administration and Modeling User’s Manual

Edit Commands

Specify the following edit commands at the command prompt (>):

Command Function

ADD Adds 9 blank lines to the editor.

CHANGE Scans for text and replaces it with the specified value. The
syntax is:

CHANGE ' scanval ue' repl aceval ue'

You can use any special character as a delimiter, as long as
you do not use the same character within the command.
Unless X and Y line commands limit the range, this edit
command performs changes to the entire edit buffer.

CLEAR Clears the current contents of the edit buffer.

DX Deletes the line marked X.

DY Deletes the line marked Y.

DX-Y Deletes the lines between the X and Y markers,
inclusively.

END Ends the edit session and invokes the previous menu.

EX Deletes all lines before the X marker.

EY Deletes all lines after the Y marker.

EX-Y Deletes all the lines before the X marker and after the Y
marker.

HELP Displays help text for the Code Frame editor.

LET Restores lines to their previous state, should you
inadvertently change them. Specify the command before
pressing Enter. (This command is similar to the .L line
command, but applies to the entire buffer.)

LIST Lists the current contents of the Main buffer.

-110 -

Using the Code Frame Editor

Command

Function (continued)

PROFILE

QUIT or.
READ program
RESET

SCAN

Invokes a window in which you can modify PF-key settings
and edit specifications for the current edit session (see
Maintain Current PF-key Profile Window, page 113).

Ends the edit session and invokes the previous menu.
Reads the Natural source for program into the edit buffer.
Clears the X and Y markers.

Scans for data in the edit area in the following ways:
SCAN ' scanval ue

Scans for text within the delimiters.
SCAN scan val ue

Scans for the entire text after the SCAN keyword,
including spaces.

You must use delimiters for scan values that begin with a
non-alphanumeric character.

If the direction indicator is a plus sign (+), the scan begins
at the first line displayed on the panel and continues to the
end of the text. If the indicator is a minus sign (-), the scan
begins at the last line and continues to the beginning.
When the scan value is found, S is displayed in the left
column next to the target line(s).

You can also limit the scan range by marking the X-Y field
at the top of the Code Frame editor. For a description of
this field, see Using the Code Frame Editor, page 102.

-111 -

Natural Construct Administration and Modeling User’s Manual

Command Function (continued)
UPPER Invokes a window in which you can specify one or more of
the following translation options:
¢« Comments
Translates all lower case text in comments (text
preceded by *, ** or /*).
e Statements
Translates all lower case text in statements, including
variables.
¢ Quoted strings
Translates all lower case text in quoted strings.
¢ Programming
Translates text for the programming language
specified.
* Redisplays the last command issued.

Positional Edit Commands

If the code frame in the edit buffer is too large to be displayed in its entirety on the
panel, use the following edit commands to scroll through the information:

To scroll

Then

Forward or backward nnnn lines.
Forward or backward half a panel.
Forward or backward one panel.

Forward one panel (if text was
not changed).

Forward to end of code frame.

Line on which .N line command is
specified to top of panel.

-112 -

Enter +nnnn or -nnnn at the > prompt.
Enter +H or -H at the > prompt.
Enter +P or -P at the > prompt.

Press Enter.

Enter BOTTOM or ++ at the > prompt.

Enter POINT at the > prompt.

Using the Code Frame Editor

To scroll Then (continued)
Backward to top of panel. Enter TOP or -- at the > prompt.
To the line marked X or Y. Enter X or Y at the > prompt.

To line nnnn. Enter nnnn at the > prompt.

Maintain Current PF-key Profile Window

The Maintain Current PF-key Profile window allows you to change (for the current
session only) the PF- and PA-key settings, the number of updates before an auto-
matic save, and the name of the recovery member.

» To display the Maintain Current PF-key Profile window:

1 Enter PROFILE at the > prompt in the Code Frame editor.
The following window is displayed:

CS- PROF Nat ural Construct CS- PRFMD
Jun 20 Mai ntain Current PF-Key Profile 1of 1
PFL= - PRR=T__ PF3 = B_________ N
PF4 = -H_ ______ __ PFB = +4 PF6 = +P___
PF7 = N PF8 = PFO = Q___ N
PF10= __ PF11= _ PF12= __ o
PF13= __ PF14= _ PF15= _ o
PF16= __ PF17= __ PF18= __ o
PF19= __ PF20= _ PF21= __ o
PF22= __ PF23= _ = PF24= __ o
PAL= _ ~~ ~~ PA2= SCAN__ PA3 = __ N
Auto save numbers In nmember EDI TWORK
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11-
help retrn
Changes DO NOT affect your edit profile outside Construct

Maintain Current PF-Key Profile Window

-113 -

Natural Construct Administration and Modeling User’s Manual

This window displays the various settings in effect for the current edit session. The
PF-key settings for the Natural Construct editors are determined in the same man-
ner as those for the Natural editor. If you have a profile that corresponds to your
user ID, Natural Construct uses those defaults.

The fields in the Maintain Current PF-Key Profile window are:

Field Description

PF1= etc. Functions assigned to the PF- and PA- keys. You can add
new functions by typing a command next to the desired
key, or modify existing functions by typing a new command
over the one displayed.

Auto save Number of updates allowed before the source is
numbers automatically saved. If this field is blank or 0 (zero),
Natural Construct does not automatically save work.

In member Name of the program that is overwritten each time the
specified number of updates is exceeded (by default,
EDITWORK). To change the name of the program, type a
new name over the one displayed. If this field is blank,
Natural Construct does not automatically save work.

Note: Any changes made to the current profile take effect immediately and re-
main in effect for the duration of the current edit session. These changes
do not affect the Natural edit profile.

Edit Recovery

The Natural Construct editors can automatically save work in the edit buffer after
a certain number of updates. The number specified in the Auto save numbers field
in the Maintain Current PF-Key Profile window determines how often the work is
saved. If the Auto save numbers field is blank, Natural Construct does not auto-
matically save work.

114 -

Using the Code Frame Editor

In the Maintain Current PF-Key Profile window, you can also specify the name of
the recovery member where you want your work saved.

» To retrieve lost code:

Invoke the Code Frame editor.

Read EDITWORK (or whatever name you specified as your recovery member name
in the In member field) into the edit buffer.

3 Re-specify the description, as it is not saved in the recovery member.

Note: To recover edits, the value in the Auto save numbers field must not be
blank or 0 (zero) and the value in the In member field must be specified.
For information, see Maintain Current PF-key Profile Window, page
113.

Note: Save your work using a unique recovery member name, such as your user
ID. This way, your work will not be overwritten by another user using the
same recovery member name in the same library.

GUI Sample Subprogram

Sample subprograms are invoked from a user exit. These subprograms help the de-
veloper create user exit code by providing a starting sample. The GUI sample
subprogram is a client version of the mainframe sample subprogram — minus the
input statements. When Natural Construct generates a model on the client, it by-
passes the mainframe sample subprogram and reads the GUI sample subprogram
instead.

-115-

Natural Construct Administration and Modeling User’s Manual

-116 -

CREATING NEW MODELS

This chapter describes the procedure to create a new Natural Construct model and
contains information about testing the components of a model and debugging a
model. In addition, it describes special considerations for building statement mod-
els and presents a summary of tips and precautions. A section at the end of this
chapter provides information about the utility subprograms and helproutines sup-
plied with Natural Construct. These utilities can help you create your new model.

The following topics are covered:
¢« Components of a Natural Construct Model, page 118
¢ How Natural Construct Executes a Model, page 119
¢ Building a New Model, page 121
¢ Testing the Model Subprograms, page 178
¢ Implementing Your Model, page 185
¢ Statement Models, page 185
¢ Utility Subprograms and Helproutines, page 187

-117 -

Natural Construct Administration and Modeling User’s Manual

Components of a Natural Construct Model

A Natural Construct model is the combination of several components which, when
used together, generate a Natural module. Natural Construct provides models you
can use to help generate many of these components. The following table lists the
components of a Natural Construct model, as well as the name of the model you can
use to help generate each component (if applicable):

Component

Model Used To Generate

Code frames

Model PDA

Translation LDAs for
dynamic translation)

Maintenance maps
Maintenance
subprogram(s)

Pre-generation
subprogram

Generation
subprograms

Post-generation
subprogram
Clear subprogram

Save subprogram

Read subprogram

None (create manually or copy and modify existing).

CST-PDA model described in Parameters for the
CST-PDA Model, page 217.

None (create manually or copy and modify existing).
Map model (described in Natural Construct Generation

User’s Manual).

CST-Modify or CST-Modify-332 model described in
CST-Modify Model, page 239.

CST-Pregen model described in Parameters for the
CST-Pregen Model, page 259.

CST-Frame model described in Parameters for the
CST-Frame Model, page 272.

CST-Postgen model described in Parameters for the
CST-Postgen Model, page 265.

CST-Clear model described in Parameters for the
CST-Clear Model, page 221.

CST-Save model described in Parameters for the
CST-Save Model, page 233.

CST-Read model described in Parameters for the
CST-Read Model, page 227.

-118 -

Creating New Models

Component Model Used To Generate (continued)

Sample CST-Frame model described in Parameters for the
subprogram(s) CST-Frame Model, page 272.

Document CST-Document model described in Parameters for
subprogram the CST-Document Model, page 277.

Stream CST-Stream model described in Parameters for the
subprogram CST-Stream Model, page 289.

Validate CST-Validate model described in Parameters for the
subprogram CST-Validate Model, page 283.

How Natural Construct Executes a Model

The Natural Construct nucleus is a sophisticated driver program that assembles
the model components and sets them in motion. Although it invokes the model sub-
programs at the appropriate time in the generation process and performs the
functions common to all models, it is not aware of the code generated by the models.

The nucleus communicates with the model subprograms through standard param-
eter data areas (PDAs). These PDAs contain fields assigned by Natural Construct,
as well as fields that are redefined as required by a model

The generation process uses each model component at a different time. The follow-
ing diagram illustrates the components of a model and how they interact with each
other and the nucleus. The large letters correspond to the function codes a user en-
ters on the Generation main menu to invoke the corresponding subprogram(s).

-119 -

Natural Construct Administration and Modeling User’s Manual

NATURAL CONSTR

Sample

Subprograms

|

Read
Subprogram

Clear
Subprogram

"y

N\

Editors

E

Maintenance
Maps

Translation
LDAs

QbT T ‘//,/ﬂ?

Modify
Subprograms

M 3 Pre-Generation

NATURAL
CONSTRUCT
Nucleus

Parameter Data Areas

(PDAS)

Subprogram

Save
—> Subprogram

G > Expand

Code Frames

> Post-Generation

Subprogram

with Options Document

SAVE or
STOW

Subprogram

Components of a Model

-120 -

Creating New Models

Building a New Model

CD\IO’Lﬂ-bUOI\)I—‘V

The following sections describe the procedure to build a new Natural Construct
model.

To build a new model:

Define the scope of the model.

Create the prototype.

Scrutinize the prototype.

Isolate the parameters in the prototype.

Create code frame(s) and define the model.

Create the model PDA (parameter data area).

Create the translation LDAs (local data areas) and maintenance maps (panels).

Create the model subprograms.

-121 -

Natural Construct Administration and Modeling User’s Manual

Step 1: Define the Scope of the Model

Before you begin, define what module type the model will generate. The following
diagram illustrates the varying scope and overlapping functionality of different
module types:

Browse
Helproutine

—-—— -

All
Programs

—_———

Browse
Program

Multi-File
Maintenance

Single File
Maintenance

Scope and Functionality of Your Model

Is the Scope Too Broad?

If your model contains many parameters (one that generates complex modules
with broad functionality), it may:

¢ Confuse and frustrate developers

¢ Lengthen the time it takes developers to specify parameters

¢ Require complex code frames with many conditions

¢ Make the model so flexible that generated code may deviate from standards

For example, the model should not allow programmers/analysts to define PF-keys
used for standard features (these should be standardized across all applications).
On the other hand, these models can be very powerful and flexible — once the de-
veloper is familiar with them.

-122 -

Creating New Models

Is the Scope Too Narrow?

If you build a model containing few parameters (one that generates simple modules
with narrow functionality), it may:

Make the model inflexible
Limit the model’s usefulness

On the other hand, these models are simple to use and easy to maintain.

What to Generate and Why

Typically, models generate Natural source code — but the possibilities are endless.
Natural Construct was designed to generate text in any form: Unix scripts, JCL,
Cobol, Visual Basic, C++, HTML scripts, etc.

As a general rule, you will want your models to generate common modules that
cannot be parameterized at execution time. This type of module often involves file
accesses or compile-time statements, such as:

map names
parameter lists
FORMAT statements
I/0 statements

file definitions

Alternately, you may want the model to generate modules that can be parameter-
ized at execution time but are hardcoded for performance reasons (menus, for
example).

-123 -

Natural Construct Administration and Modeling User’s Manual

Step 2: Create the Prototype

Once you determine the purpose and scope of the model, you can create a Natural
module (program, subprogram, map, etc.) to base your model on. This module
should perform all the functions you defined for the scope of the model.

If the scope contains mutually-exclusive options, you should prepare several proto-
types. For example, if the Natural code to maintain a file with a superdescriptor is
significantly different from the code that maintains a file with a descriptor, create
two prototypes. If possible, generate the more complex prototype first and add the
simpler prototype later.

Step 3: Scrutinize the Prototype
After creating your prototype Natural program, perform the following checks:
¢ Ensure that the program is fully commented
e Check the code indentation
¢ Check the clarity of the program
¢ Ensure that the program conforms to standards
¢ Evaluate the efficiency of the program
¢ Ensure that variable names are sorted

After you check the prototype as thoroughly as possible, have someone else perform
the same checks and tests.

—124 -

Creating New Models

Step 4: Isolate the Parameters in the Prototype

The basic premise behind program generation is to take a working module that
performs a fixed function and generalize the module so it performs varying func-
tions based on parameter values.

Which Elements Need to be Parameterized?

The first step is to determine which program lines remain constant in the general-
ized module and which lines vary. If the prototype reads a file and displays
information, for example, the file and information varies with each generation.
Therefore, this information must be parameterized. To make the prototype easier
to generate, try to reduce the number of parameters in your prototype without af-
fecting the functionality.

Remove Redundant Parameters

Programs often contain several instances of the same parameter. These can be re-
duced to a single instance of the parameter by using a constant variable:

Redundant Parameters Single Parameter

DEFI NE DATA LOCAL DEFI NE DATA LOCAL

01 #A(AL/1:50 01 #ASI ZE(P3) CONST<50>

. 01 #A(Al/ 1: #AS| ZE)

END- DEFI NE END- DEFI NE

| F #A(#CUR: 50) NE ' ' THEN | F #A(#CUR: #AS| ZE) NE ' ' THEN
FOR #1 = #CUR TO 50 FOR #1 = #CUR TO #ASI ZE

etc. etc.

This technique makes the prototype easier to generate, since there are fewer pa-
rameter instances. In addition, the generated programs are easier to read, since it
is more obvious that the constant value always refers to the same thing.

—-125-

Natural Construct Administration and Modeling User’s Manual

Compile Time Versus Execution Time

Ensure that your prototype does not contain hardcoded parameters that could eas-
ily be calculated at execution time. Consider the following examples:

Unnecessary Constant Determine at Execution Time
DEFI NE DATA LOCAL DEFI NE DATA LOCAL

01 #MAX- LI NES(P3) CONST <15> 01 #MAX-LI NES(P3) CONST <15>

01 #LI NE- NR(P3/ 1: #MAX- LI NES) 01 #LI NE- NR(P3/ 1: #MAX- LI NES)
INIT<1, 2,3,4,5,6,7,8,9, 10, 11, 12, 13, 01 #l (P3)

15> END- DEFI NE
END- DEFI NE FOR #1 = 1 TO #MAX- LI NES
ASSI GN #LI NE- NR (#l) = #l
END- FOR

Both the INIT statement on the left and the FOR loop on the right initialize an ar-
ray with consecutive numbers. However, the code on the right does not vary based
on the value of #MAX-LINES. No special processing is required to generate the
code on the right, as it is constant for each generation. To make the prototype more
flexible and easier to generate, use Natural system variables to determine the val-
ues at execution time. Ensure you do not sacrifice program efficiency to achieve
this goal.

Step 5: Create Code Frame(s) and Define the Model

Once you have written and tested your prototype, save it in the SYSCST library.
The next step is to create the code frame(s) used by the model. If the prototype pro-
gram is large, you can create multiple code frames with a portion of the program
in each code frame. In addition, you can use nested code frames.

First, invoke the Code Frame editor and read in your prototype. Next, determine
the parameters for the code frame. These include substitution parameters, code
frame conditions, generation subprograms, nested code frames, and user exits.

-126 -

Creating New Models

The following example shows a code frame in the Code Frame editor:

Frame PRSLCC9 SI ZE 1125
Description Browse Sel ect Code(c) Inline Subroutines FREE 59940
> >+ ABS X X-Y XS 18 L1

Al...+ ... 1. ..+ ... 2....+...3. ... +... 4 ...+ ...6....+...6....+...7.. TC
*

* Subroutines (in al phabetical order).
* Check wildcard processing

CHECK- W LD- CHARACTER 1
CuUsLCwWC? F"
* Initializations *
CUSLCI ? F
Subprogram CUSCGBND Par aneter: | N Tl ALI ZE N

* Initialize the input key to the m ni num key val ue specified
ASSI GN #1 NPUT. &PRI ME- KEY = #M N KEY- VALUE

Process Sel ected Colum or Record

PROCESS- SELECTI ON- COLUMN OR PROCESS- SELECTED- RECORD 1

CUSLCPS? "

* Final Processing

CUSLCFP?

M SCELLANEQUS- SUBROUTI NES

PERFORM FI NAL- PROCESSI NG

END

*

Cm .7

L D TP R S T T - N R - R S A

Example of a Code Frame in the Code Frame Editor

For a description of the Code Frame editor, see Using the Code Frame Editor,
page 102. For information about invoking the Code Frame editor, see Edit Com-
mands, page 110.

The code frame above shows different methods of supplying parameters for a code
frame. The following sections describe each of these methods.

Substitution Parameters

One type of code frame parameter is substitution parameters. These parameters
are always present in the same format, but their values change. You can usually
assign substitution parameters by replacing the values with unique substitution
strings. To identify a parameter as a substitution, use an ampersand (&) at the be-
ginning of the substitution string in the editor.

-127 -

Natural Construct Administration and Modeling User’s Manual

The code frame example on the previous page contains the following substitution
parameter:

* |nitialize the input key to the mninum key val ue specified
ASSI GN #I NPUT. &PRI ME- KEY = #M N- KEY- VALUE

Values are substituted after the module is fully generated. The unique identifier
(&PRIME-KEY in the example above) is substituted for the derived value by plac-
ing the unique identifier and the value in the Natural stack.

For more information about substitution during the post-generation phase, see
Post-generation Subprogram, page 172.

Substitution parameters cannot span multiple lines and always begin with an am-
persand (&). The substitution string can be up to 32 characters in length. The
substitution value can be up to 72 characters in length.

The name of the parameter should correspond to the name of the model PDA vari-
able that supplies the value. For example, &VAR is assigned the value of #PDA-
VAR or #PDAX-VAR. Following this naming convention makes it easier to gener-
ate the model subprograms using the supplied models. For more information about
the model PDA, see Model PDA, page 146.

Parameters Supplied by Generation Subprograms

A generation subprogram can supply the code frame parameters. When a substitu-
tion parameter spans more than one line, varies in length, or performs complex
calculations (centering, for example), you can supply the parameters in a genera-
tion subprogram.

An example of this type of parameter is a file view where the developer specifies
the name of the file to use. Instead of supplying a list of the fields in the view, you
can specify the name of a subprogram to supply this list.

To indicate that a subprogram is called on this line, enter N (Natural subprogram)
in the corresponding T (Type) field. To pass a parameter to the subprogram, specify
the parameter value after the subprogram name. The parameter can be a literal
string, 1 to 32 characters in length.

-128 -

Creating New Models

Natural Construct passes the following structures to each generation subprogram:
Model PDA (CUxxPDA), containing model-specific parameters

CU—PDA, containing the standard generation parameters

CSASTD, containing the standard messaging parameters

The #PDA-FRAME-PARM field in the CU—PDA is used to pass the parameter lit-
eral string.

The code frame example on page 125 contains the following line of code:
Subprogram CUSCGBND Paranmeter: | N TIALIZE N

This line indicates that the Natural CUSCGBND subprogram is invoked from this
point in the code frame and passed the INITTALIZE value.

Because code frame parameters are supplied in a generation subprogram, the same
subprogram can be invoked several times within the code frame. The subprogram
uses the value of the passed parameter to determine what to generate each time.

Parameters Supplied by Nested Code Frames

Another method of supplying parameters to a code frame is to use nested code
frames. As with generation subprograms, nested code frames can perform substi-
tutions on lines of varying length. In fact, nested code frames have all substitution
options available to the calling code frame. For example, a nested code frame can
have substitution parameters, generation subprograms, and its own nested code
frames.

All code frames supplied with Natural Construct end with 9 (see the description of
the Code frame(s) field in Maintain Models Function, page 48) and 8 is reserved
for any future updates. When you reference a code frame from within another code
frame (nested), change the 9 to a question mark (?). The question mark (?) indicates
a hierarchy structure in which Natural Construct uses the code frame with the low-
est number during generation.

For specific hardcoded references, you can specify a nested code frame without us-
ing the question mark (?) — but if you want to change what the nested code frame
generates, you must modify every calling code frame and its reference. When you
use the question mark (?) character, Natural Construct automatically calls your
new version of the nested code frame.

-129 -

Natural Construct Administration and Modeling User’s Manual

Note: To make nested code frames more reusable across multiple models, it is
important to use exactly the same naming conventions. In this way, the
nested code frame substitution parameters and logicals are always avail-
able within the model PDAs.

To indicate that another code frame is called on a Code Frame editor line, enter F
in the corresponding T (Type) field.

The code frame example, Step 5: Create Code Frame(s) and Define the Model,
page 126, contains the following nested code frame:

CUSLCI ? F

This line indicates that the CUSLCIn code frame supplies parameters for the code
frame, where n is a number from 1 to 9 (line type F in the Code Frame editor).

To modify a supplied code frame, copy the code frame, change the 9 to a lesser num-
ber (from 1 to 7), and modify the code frame as desired. The next time Natural
Construct calls that code frame, the one you created with the lesser number is
used. For example, you can copy the CUSLCI9 code frame, change the name to
CUSLCI7, and edit it as desired. The next time Natural Construct calls CUSLCI?,
CUSLCI7 is used.

-130 -

Creating New Models

In the following example, the CUSAA9 code frame has two nested code frames
(CUSAB? and CUSAC?). The arrows indicate which code frame is used:

CUSAA9

Calling CUSAB? F

CUSAB9

Calling CUSAC?\ F
Calling CUSAC?=™ F

x CUSAC7
Calling CUSAD?_ F

\ CUSACS
CUSADS

CUSAC9

CUSAD9

Example of Calling Nested Code Frames

Note: Ensure that you do not create endless loops within nested code frames;
endless loops result when a code frame calls itself, either directly or indi-
rectly (through a nested code frame).

Parameters Supplied by User Exits

Parameters for a code frame can also be supplied by user exits. User exits provide
maximum flexibility for defining parameters because parameters are specified in
the form of embedded Natural code. User exits allow programmers/analysts to pro-
vide specialized portions of code at various points within the generated module.

-131-

Natural Construct Administration and Modeling User’s Manual

Add User Exit Points

To include a user exit in a code frame, enter the name of the user exit in the text
portion of a line and “U” in the corresponding T (Type) field.

You can specify additional attributes by entering “.E” at the beginning of the user
exit line:

Frame CUSLD9 S| ZE 5973
Description Browse Sel ect Subp. Define Data Area FREE 54796
> >+ ABS X X-Y _S102 L1
Top...+....1....+ .. .2....+...3....+ ... 4 . . .+ ... 5 ...+, ... 6....+...7.. TC
CuU--B? F
DEFI NE DATA
GDA- SPECI FI ED 1
GLOBAL USI NG &GDA &W TH- BLOCK
PARAMVETER
01 #PDA- KEY(&PARM NAT- FORMAT) /* Start/Returned key.
VARl ABLE- M N- MAX AND PREFI X- | S- PDA- KEY 1

01 REDEFI NE #PDA- KEY
02 #PDA- KEY- PREFI X(&PREFI X- NAT- FORVAT)
PARAMETER USI NG CDSELPDA /* Sel ection info
PARAMETER USI NG CU—PDA /* d obal paraneters
PARAMETER USI NG CSASTD /* Message i nfornmation
. eRAMETER- DATA U
LOCAL USI NG CDDI ALDA /* Used by dial og objects.
LOCAL USI NG CDENVI RA /* Used to capture/restore previous environnent.

DI RECT- COMWAND- PROCESSI NG 1
LOCAL USI NG CDGETDCA /* Used to get direct comuand info. "
MULTI PLE- W NDOWS 1
et L 20k L B A Bk B T T
CUSLD9 read

Example of Adding User Exit Points in a Code Frame

-132 -

Creating New Models

After you press Enter, the Maintain User Exit window is displayed:

CSMUSEX Nat ural Construct

Jul 28 Mai ntain User Exit 1of 1
User exit name START- OF- PROGRAM

Code franme name COBB9 Conditional N

User exit required _
Generate as subroutine .
Sanpl e subprogram...... o GUlI sanpl e subprogram ..
Default user exit code .
*

* Specify code to be executed at the beginning of the object subprogram
* This m ght include security checking | ogic.

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn

Maintain User Exit Window

Use this window to specify information about the user exit. The fields in this win-

dow are:

Field

Description

User exit name
Code frame name

Conditional

User exit required

Name of the user exit.

Name of the code frame for the user exit.

Condition code for the user exit. If the user exit is
conditional (required only under certain conditions), Y

is displayed. If it is not conditional, N is displayed.

If this field is marked, the user exit is required; if this
field is blank, the user exit is optional.

-133 -

Natural Construct Administration and Modeling User’s Manual

Field

Description (continued)

Generate as
subroutine

Sample
subprogram

GUI sample
subprogram

Note:

If the user exit is used in more than one place in the
module, enter Y. The code is generated as an inline
subroutine. During generation, Natural Construct
places the code in a subroutine with the same name as
the user exit. This allows you to execute the code
several times using a PERFORM user-exit-name
statement.

If the user exit is optional, the PERFORM statement
can be conditional on the presence of the user exit itself
(for information, see Code Frame Conditions, page
135).

Regardless of whether user exits are generated as
subroutines or embedded code, use the DEFINE EXIT
keyword to specify all user exits.

If a subprogram contains the sample code for the user
exit, enter the name of the subprogram. The sample
code is generated after the developer enters the
SAMPLE command in the User Exit editor and selects
an exit.

Natural Construct passes three parameter data areas
(PDAs) to each sample subprogram: the model PDA,
CU—PDA, and CSASTD. For more information, refer
to Step 6: Create the Model PDA, page 142.

The SAMPLE command is executed automatically
when you enter “U” on the Generation main menu or
press PF11 (userX) on the last specification panel for a
model that supports user exits, but has none specified.

GUI sample subprogram invoked when the code is
being generated from the client. This subprogram
should not display input panels. If the sample
subprogram does not use input panels, it can be used in
the GUI sample subprogram. If the sample
subprogram includes input panels, create a copy and
modify to use the defaults.

~-134-

Creating New Models

Field Description (continued)
Default user If complex processing or calculations are not required,
exit code you can enter up to 10 lines of sample code. This code

becomes the default sample code for this user exit.

Note: If you specify a sample subprogram name and provide
default user exit code, Natural Construct generates
the default user exit code before the sample
subprogram code.

Code Frame Conditions

Frequently, a block of statements is inserted in a program based on a condition or
combination of conditions specified in the code frame. In the following example, the
INPUT WITH TEXT+MSG USING MAP '&§MAP-NAME' INPUT statement is gen-
erated if a map is used. Otherwise, the INPUT(AD=0I) is generated:

MAP- USED 1
INPUT WTH TEXT + MSG USI NG MAP ' &VAP- NAVE' "

ELSE 1
I NPUT(AD=Q) *PROGRAM #HEADERL "
| *DATX #HEADER2 *TI MX

Example of a Condition in a Code Frame

Note: To identify a condition line, enter a number in the C (Condition) column
in the Code Frame editor. Number 1 initiates a new condition; higher
numbers represent nested conditions that are only evaluated if all active
lower conditions are true.

To identify a statement as conditional, enter a double quotation (") in the C column.
The corresponding statement is included in the generated module only if the cur-
rent condition is true.

—-135-

Natural Construct Administration and Modeling User’s Manual

When you use code frame conditions, consider the following points:

The names of conditions must correspond to the names of logical variables defined
in the model PDA, with the #PDAC- prefix removed. (For more information about
the model PDA, see Step 6: Create the Model PDA, page 142.) The MAP-USED
condition, for example, corresponds to the #PDAC-MAP-USED logical variable.

Note: These condition variables must be part of the redefinition of the #PDA-
CONDITION-CODES field within the model PDA.

When Natural Construct generates a module, it checks the condition code values

to determine whether the condition is true. It resets the conditions before invoking
the maintenance subprograms. Condition codes should be selectively set to TRUE
by either the pre-generation subprogram or one of the maintenance subprograms.

Conditions can be negated, ANDed, and ORed (in order of precedence).

Conditions can be nested and ELSEed (ELSE refers back to the previous condition
at the same level number).

The RETURN-TO-CONDITION keyword can close levels of conditioning.

A special condition line can check for the existence of a specific user exit. To specify
this type of condition, enter the name of the user exit as the condition value and
specify a line type of X. These conditions cannot be negated, ANDed, or ORed, but
can be nested. They do not require a corresponding #PDAC variable.

—-136 -

Creating New Models

Example of code frame conditions

Frame ABC S| ZE 68
Description Exanmpl e of conditions FREE 36676

> >+ ABS X XY _S21L1

Top.+...1...+. ..2... 4 ..3... 4+ ..4 ..+ ..5 ..+ ..6...+ ..7.. TCNotes

MAP- USED 1

I NPUT W TH TEXT + MSG USI NG MAP ' &VAP- NAME' 1 1

ELSE 1

| NPUT(AD=0l) * PROGRAM #HEADERL "2

/| *DATX #HEADER2 *TI MX "2

ROOM FOR- SKI P 2

/ "3

RETURN- TO- CONDI TI ON 1

/ 20T #FUNCTI ON- HEADI NG "2
NOT MAP- CONTAI NS- PARAVETERS 2
CODE1- SPECI FI ED 3

/ 16T #CODE(1) 20T #FUNCTI ON(1) "4
CODE2- SPECI FI ED 3

/ 16T #CODE(2) 20T #FUNCTI ON(2) "5

CODE12- SPECI FI ED 3
/ 16T #CCDE(12) 20T #FUNCTI ON(12) "6
RETURN- TO- CONDI TI ON 2
/ 11T ' Code:' #CODE(AD=M "7
ELSE 2
Subprogram CUMNG N Par anet er N " 8
RETURN- TO- CONDI T1 ON 1
21/1 'Direct Command:' #COVMAND(AD=M "2
RESET +MSG 9
AFTER- | NPUT
AFTER- | NPUT X 1
PERFORM AFTER- | NPUT " 10

Higher level numbers (nested conditions) are always ANDed with previous lower
condition numbers.

- 137 -

Natural Construct Administration and Modeling User’s Manual

Notes

The lines of code corresponding to each note number on the previous page are in-
serted into the generated module when the following Boolean conditions are met:

Notes Boolean Condition

1 #PDAC-MAP-USED = TRUE

2 #PDAC-MAP-USED = FALSE

3 #PDAC-MAP-USED = FALSE and
#PDAC-ROOM-FOR-SKIP = TRUE

4 #PDAC-MAP-USED = FALSE and
#PDAC-MAP-CONTAINS-PARAMETERS = FALSE and
#PDAC-CODE1-SPECIFIED = TRUE

5 #PDAC-MAP-USED = FALSE and
#PDAC-MAP-CONTAINS-PARAMETERS = FALSE and
#PDAC-CODE2-SPECIFIED = TRUE

6 #PDAC-MAP-USED = FALSE and
#PDAC-MAP-CONTAINS-PARAMETERS = FALSE and
#PDAC-CODE12-SPECIFIED = TRUE

7 #PDAC-MAP-USED = FALSE and
#PDAC-MAP-CONTAINS-PARAMETERS = FALSE

8 #PDAC-MAP-USED = FALSE and
#PDAC-MAP-CONTAINS-PARAMETERS = TRUE

9 Line is inserted unconditionally.

10 Line is inserted only when the AFTER-INPUT user exit is specified in

the User Exit editor before the module is generated.

-138 -

Creating New Models

Define the Model

Use the Maintain Models panel to define your model.
» To display the Maintain Models panel:

1 Logonto the SYSCST library.

2 Enter “MENU” at the Next prompt (in the Direct Command box for Unix).
The Administration main menu is displayed.

3 Enter “M” in the Function field.
The Maintain Models panel is displayed:

CSDFM Natur al Construct CSDFMD
Aug 09 Mai nt ai n Mbdel s 1of 1
Action __ ABCDMNPR
Model ...
Description
PDA name _ Status window _
Programming node - Comment start indicator ..
TYPE _ Conment end indicator

Code frame(s)
Modi fy server specificatn

Modi fy client specificatn

Cear specification _ Post -generation _ _
Read specification _ Save specification _ -
Pre-generation o Docunent specification ... -
Command
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit frane mai n

Maintain Models Panel

Use this panel to specify the names of the model components (the generation sub-
programs require this model definition); the specified components do not have to
currently exist. (When naming the model components, use the naming conventions
described in the following section.) For a description of the Maintain Models panel,
see Maintain Models Function, page 48.

—-139 -

Natural Construct Administration and Modeling User’s Manual

Naming Conventions for Model Components

Standardizing the names of the various components of a model makes it easier to
write and debug models. All supplied model subprograms, maps, and data areas
are named CUxx, where xx uniquely identifies each model. When naming the mod-
el components, we recommend you use the following naming conventions:

Name Model Component

CUxxPDA Parameter data area.

CUxxR Read subprogram.

CUxxC Clear subprogram.

CUxxMA First maintenance subprogram.

CUxxMAn Map associated with the first maintenance subprogram.

To support dynamic translation, use a zero (0) in the last
position of the map name. To display a map based on the
current value of the *Language system variable, use a
*Language value in the last position of the map name.

CUxxMAL Translation local data area (LDA) associated with the first
maintenance subprogram.

A translation LDA contains the names of all variables that are
initialized to the maintenance map text and can be translated.
You cannot dynamically translate a map to another language
unless the module that invokes the map has a corresponding

translation LDA.
CUxxMB Second maintenance subprogram.
CUxxMBn Map associated with the second maintenance subprogram.
CUxxMBL Translation LDA associated with the second maintenance
subprogram.

—140 -

Creating New Models

Name Model Component (continued)

CUxxSyyy Sample user exit code subprograms, where yyy is a 1- to 3-
character suffix that uniquely identifies each sample
subprogram.

For example, the CUFMSRIN sample subprogram supplies
REINPUT statements for the Maint model (if required).

CUxxGyyy Generation subprograms, where yyy is a 1- to 3- character
suffix that uniquely identifies each generation subprogram.

For example, the CUMNGGL subprogram generates
parameter variables for the Menu model (when a length and
format are specified).

CUxxPR Pre-generation subprogram.
CUxxPS Post-generation subprogram.
CUxxS Save subprogram.

CUxxD Document subprogram.

To modify the supplied Natural Construct models, copy the subprograms and
change the prefix from CU to CX (do not modify the supplied subprogram). This
way, you can identify the modified subprograms and include any changes in future
versions of Natural Construct.

After defining a model, it can be used in the Generation subsystem.

- 141 -

Natural Construct Administration and Modeling User’s Manual

Step 6: Create the Model PDA

All models require three parameter data areas (PDAs). Two of the data areas are
supplied with Natural Construct. You create the model PDA for each model.

PDAs pass information between the nucleus and the model and code frame subpro-
grams. Every model subprogram uses the following external PDAs:

PDA Description

Model PDA User-created and named CUxxPDA, where xx uniquely
identifies the model. This PDA contains variables and
conditions specific to the model. It is the only PDA you
must create.

You can use the CST-PDA model to create the model PDA.
For a description of the CST-PDA model, see Parameters
for the CST-PDA Model, page 217.

CU—PDA Supplied with Natural Construct.

CSASTD Supplied with Natural Construct.

—142 -

These PDAs must contain the following fields:

Creating New Models

PDA Required Fields Format
Model PDA #PDA-CONDITION-CODES L/1:75
(varies for #PDA-USER-AREA A100/1:40
each model)
CU—PDA #PDA-MODE A2
(same for #PDA-OBJECT-TYPE Al
every model) #PDA-MODIFY-HEADER1 A60
#PDA-MODIFY-HEADER2 Ab4
#PDA-LEFT-PROMPT All
#PDA-LEFT-MORE-PROMPT A9
#PDA-RIGHT-PROMPT Al1l
#PDA-RIGHT-MORE-PROMPT A9
#PDA-PHASE Al
#PDA-DIALOG-METHOD 11
#PDA-TRANSLATION-MODE L

—143 -

Natural Construct Administration and Modeling User’s Manual

PDA (continued) Required Fields Format
#PDA-USERX-NAME A10
#PDA-PF-NAME A10/1:12
#PDA-MAIN-NAME A10
#PDA-RETURN-NAME A10
#PDA-QUIT-NAME A10
#PDA-TEST-NAME A10
#PDA-BACKWARD-NAME A10
#PDA-FORWARD-NAME A10
#PDA-LEFT-NAME A10
#PDA-RIGHT-NAME A10
#PDA-HELP-NAME A10
#PDA-AVAILABLE1-NAME A10
#PDA-AVAILABLE2-NAME A10
#PDA-AVAILABLE3-NAME A10
#PDA-PF-NUMBER N2/1:12
#PDA-MAIN N2
#PDA-RETURN N2
#PDA-QUIT N2
#PDA-TEST N2
#PDA-BACKWARD N2
#PDA-FORWARD N2
#PDA-LEFT N2
#PDA-RIGHT N2
#PDA-HELP N2
#PDA-AVAILABLE1 N2
#PDA-AVAILABLE2 N2
#PDA-AVAILABLES N2
#PDA-PF-KEY A4
#PDA-PF-MAIN A4
#PDA-PF-RETURN A4
#PDA-PF-QUIT A4
#PDA-PF-TEST A4
#PDA-PF-BACKWARD A4
#PDA-PF-FORWARD A4
#PDA-PF-LEFT A4
#PDA-PF-RIGHT A4
#PDA-PF-HELP A4
#PDA-PF-AVAILABLE1 A4
#PDA-PF-AVAILABLE2 A4
#PDA-PF-AVAILABLES A4

— 144 —

Creating New Models

PDA (continued) Required Fields Format
#PDA-TITLE A25
#PDA-GEN-PROGRAM A8
#PDA-MODEL-VERSION N2.2
#PDA-HELP-INDICATOR A4
#PDA-USER-DEFINED-AREA A1/1:100
#PDA-UNDERSCORE-LINE A80
#PDA-RIGHT-PROMPT-OF A4
#PDA-DISPLAY-INDICATOR A4/1:10
#PDA-CURS-FIELD 14
#PDA-CV1 C
#PDA-CV2 C
#PDA-CV3 C
#PDA-CV4 C
#PDA-CV5 C
#PDA-CV6 C
#PDA-CV7 C
#PDA-CV8 C
#PDA-SCROLL-INDICATOR A4
#PDA-DYNAMIC-ATTR-CHARS A1/1:13
#PDA-FRAME-PARM A32
#PDA-SYSTEM A32

CSASTD MSG A79

(same for MSG-NR N4

every model) MSG-DATA A32/1:3
RETURN-CODE Al
ERROR-FIELD A32
ERROR-FIELD-INDEX1 P3
ERROR-FIELD-INDEX2 P3
ERROR-FIELD-INDEX3 P3

The following sections describe the layout of these PDAs.

Note: The CSASTD PDA is used by every model. It passes messages between
subprograms and is typically used for error handling.

— 145 -

Natural Construct Administration and Modeling User’s Manual

Model PDA
The following example shows a model PDA:

Par anet er CUETPDA Li brary SYSCST DBID 19 FNR 28
Command > +
I T L Nane F Leng I ndex/Init/EM Nanme/ Corment
TOP - mmmmm e B T
1 CUETPDA /* Construct Model PDA
2 #PDA- CONDI TI ON- CODES L (1:75) /* Conditions in franes
R 2 #PDA- CONDI TI ON- CODES /* REDEF. BEG N : #PDA- CONDI TI ON
3 #PDAC- USE- M5G NR L /* TRUE | F MESSAGE NUMBERS ARE U
3 #PDAC- FI LE- NAVE- SPECI FI ED L
3 #PDAC- FI ELD- NAMVE- SPECI FI ED L
3 #PDAC- PDA- SPECI FI ED L
3 #PDAC- COVMPLEX- FI ELD L /* Field is a PE, MJ a STRUCT. or

* /* REDEFI NE

3 #PDAC- SCROLLI NG L /* Scrolling
3 #PDAC- NATURAL- W NDOAB L /* Set wi ndow sizes
3 #PDAC- W NDOW LENGTH L /* Set window line |ength
3 #PDAC- W NDOW COLUWN L /* Set wi ndow col umm hei ght
3 #PDAC- W NDOW BASE L /* Set wi ndow base
3 #PDAC- DEFI NE- W NDOW L /* Generate DEFI NE W NDOW
2 #PDA- USER- AREA A 100 (1:40) /* Area for INPUT and der
R 2 #PDA- USER- AREA /* REDEF. BEG N : #PDA- USER- AREA
3 RESET- STRUCTURE /* Use for reseting non-al pha
* /* fields in Oear Subprogram
4 #PDAX- DESCS A 55 (1:4) /* description
4 #PDAX- USE- MG NR L
*
* Modi fy screen 2
4 #PDAX- PDA A 8 /* PDA with display info.
4 #PDAX- FI LE- NAMVE A 32 /* File nane
4 #PDAX- FI ELD- NAVE A 32 /* Field name
4 #PDAX- VAP- NAVE A 8 /* Input using map
4 #PDAX- LI NES- PER- SCREEN N 3 /* Number of lines per screen
*
* used to generate a
* DEFI NE W NDOW st at enent .
4 DEFI NE- W NDOW | NFO
5 #PDAX- W NDOW SI ZE A 6 /* Wndow size
R 5 #PDAX- W NDOW S| ZE /* REDEF. BEGQ N : #PDAX- W NDOW S
6 #PDAX- W NDOW S| ZE- W DTH N 3 /* Wndow size width
6 #PDAX- W NDOW Sl ZE- HEI GHT N 3 /* Wndow si ze hei ght
5 #PDAX- W NDOW BASE A 6 /* Wndow base
R 5 #PDAX- W NDOW BASE /* REDEF. BEGQ N : #PDAX- W NDOW B
6 #PDAX- W NDOW BASE- LI NE N 3 /* Wndow base |ine
6 #PDAX- W NDOW BASE- COLUWN N 3 /* Wndow base col um
5 #PDAX- W NDOW FRAME- OFF L /* Wndow frame off
5 #PDAX- W NDOW TI TLE A 65 /* Wndow title
5 #PDAX- W NDOWM CONTROL - SCREEN L /* W ndow control screen on
5 #PDAX- DEFI NE- W NDOW L /* Use DEFINE W NDOW st at ement
4 #PDA- Fl ELD- TYPE A 2 /* Field type: GR PE, PC, MJ, MC
* /* S(Structure), F(Single Field)
* /* R(REDEFI NE)
4 #PDA- FI ELD- REDEFI NED L

— 146 -

Creating New Models

4 #PDA- LEVEL- NUMBER N 1
4 #PDA- FI ELD- FORVAT A 1
4 #PDA- FI ELD- LENGTH N 3.1
R 4 #PDA- Fl ELD- LENGTH
5 #PDA- UNI TS N 3
5 #PDA- DECI MALS N 1
4 #PDA- FROM | NDEX N 5 (1:3)
4 #PDA- THRU- | NDEX N 5 (1:3)
4 #PDA- FlI ELD- RANK N 1
4 #PDA- FI LE- CODE P 8 /* file code for security check
4 #PDA- MAX- LI NES N 5 /* Num of occurrences for PE/ MJ
4 #PDA- WFRAVE A 1 /* Paraneters for w ndow setting
4 #PDA- W.ENGTH A 3
4 #PDA- WOOLUWN A 3
4 #PDA- WBASE A 7

The fields in the model PDA are described in the following sections.

#PDA-CONDITION-CODES

This field (format L/1:75) is an array of condition codes that allow you to define up
to 75 logical conditions for each model. The field is usually redefined into separate
logical variables, one for each condition variable used by the model code frames.
The name of the logical condition variable in the PDA must be the same as the con-
dition, with a #PDAC- prefix added.

When a module is generated, the condition values are checked to determine wheth-
er the condition is true. The conditions are reset before the maintenance
subprograms are invoked. Along with the pre-generation subprogram, the mainte-
nance subprograms assign all true condition values.

Note: To make nested code frames more reusable across multiple models, it is
important to use exactly the same naming conventions. In this way, the
nested code frame substitution parameters and logicals are always avail-
able to the model PDAs.

- 147 -

Natural Construct Administration and Modeling User’s Manual

#PDA-USER-AREA

This field (format A100/1:40) defines a large block of data that is passed between
the Natural Construct nucleus and the model subprograms. Always redefine this
field into separate fields that refer to the module being generated. The following
information can be passed:

Data entered by the developer on a maintenance panel. The names of the fields
that receive the parameters should be prefixed by #PDAX- and appear first in the
redefinition of #PDA-USER-AREA. Usually, the values for these fields are written
as comments at the beginning of the generated program. This allows Natural Con-
struct to read the parameters for subsequent regeneration.

You can also group a series of related parameters into a single external parameter
by redefining the #PDAX- variable into sub-fields. This technique reduces the
number of comment lines at the beginning of a generated program.

Note: This technique should only be used when the length of the sub-fields does
not change.

Data calculated during the generation process and shared with the model subpro-
grams. The variable names should be prefixed by #PDA- and appear second in the
redefinition of #PDA-USER-AREA (after the #PDAX- variables).

The pre-generation subprogram assigns these internal generation variables; all
subsequent code frame and model subprograms can use the values.

When you use substitution parameters in code frames, a variable with the same
name and a #PDAX- or #PDA- prefix should be in the redefinition of the
#PDA-USER-AREA variable. For example, the & MAX-SELECTIONS substitution
parameter value should be supplied by the #PDA-MAX-SELECTIONS variable or
the #PDAX-MAX-SELECTIONS variable.

Note: To make nested code frames more reusable across multiple models, it is
important to use exactly the same naming conventions. In this way, the
nested code frame substitution parameters and logicals are always avail-
able to the model PDAs.

— 148 —

Creating New Models

CU—PDA
The following example shows the CU—PDA data area:

Par aneter CU-PDA Library SYSCST DBID 19 FNR 28
Conmmand > +
I T L Nane F Leng I ndex/ | nit/EM Nane/ Comrent

TOP = mmmmm e B T

* Paraneters used by all user
* subpr ogr ans

*

1 CU-PDA

* Par aneters used by generating

* subpr ogr ans

#PDA- MODE A 2 /* R=Report, S=Struct,SD=Str data
#PDA- OBJECT- TYPE /* P=Program N=Subprogram et c.

NN
>
=

* Parms used by nodify screens

2 #PDA- MODI FY- HEADERL A 60 /* First heading on nodify scr
2 #PDA- MODI FY- HEADER2 A 54 /* Second heading on nodify scr
2 #PDA- LEFT- PROVPT A 11 /* Date
R 2 #PDA- LEFT- PROVPT
3 #PDA- LEFT- MORE- PROVPT A 9
2 #PDA- Rl GHT- PROWPT A 11 /* nof n
R 2 #PDA- Rl GHT- PROWPT
3 #PDA- Rl GHT- MORE- PROWPT A 9
2 #PDA- PHASE A 1/* Mdify, Generate, Clear etc.
2 #PDA- DI ALOG METHCOD | 1 /* See CSLMVETH
* /* 1 = Input + Validate
* /* 2 = Input no validate
* /* 3 = Validate no input
* /* 4 = Validate input on error
2 #PDA- TRANSLATI ON- MODE L /* Translati on node
*
* The followi ng PF key vari abl es are only required if the nodify
* or sanple programrequires the use of additional PF keys other
* than the standard MAI N, RETURN, QUIT, HELP keys.
*
* Pl ace the foll owi ng key nanes at the bottom of map instead of
* using the KD option. The nodify program shoul d reset the keys
* that are not being used or assi gn the avail abl e key nanes
* to set additional keys.
*
#PDA- USERX- NAVE 10 /* User Exit nane.
#PDA- PF- NAVE 10 (1:12)
R 2 #PDA- PF- NAMVE /* REDEF. BEG N : #PDA- PF- NAMVE

#PDA- MAI N- NAME
#PDA- RETURN- NAMVE
#PDA- QUI T- NAME
#PDA- TEST- NAME
#PDA- BACKWARD- NAMVE
#PDA- FORWARD- NAMVE
#PDA- LEFT- NAME
#PDA- RI GHT- NAMVE

10 /* Main nenu key nane.
10 /* Return key nane.
10 /* Quit key nane.

10 /* Test key nane.

10 /* Bkwrd key nane.

10 /* Frwd key nane.

10 /* Left key nane.

10 /* R ght key nane.

WWWwWwwwwwNn NN
>>>>>>>> >>

— 149 -

Natural Construct Administration and Modeling User’s Manual

* ok ok *

* % ok ok %k ok

*

wWwww

WWWWWWWWWWwWwWwNN

NN NWWWWWWWWWWwNN

NN NN

#PDA- HEL P- NAME

#PDA- AVAI LABLE1- NAME
#PDA- AVAI LABLE2- NAME
#PDA- AVAI LABLES- NAME

>>>>

This array contains the PF-KEY
standard key setting as well as
nunbers for non-standard key
#PDA- PF- NUMBER

#PDA- PF- NUMBER

#PDA- MAI N

#PDA- RETURN

#PDA-QUI T

#PDA- TEST

#PDA- BACKWARD

#PDA- FORWARD

#PDA- LEFT

#PDA- Rl GHT

#PDA- HELP

#PDA- AVAI LABLE1

#PDA- AVAI LABLE2

#PDA- AVAI LABLE3

P4

2222222222 2Z22

This array corresponds to the
'"PF' string prefixes the key
#PDA- PF- KEY

#PDA- PF- KEY

#PDA- PF- MAI N

#PDA- PF- RETURN

#PDA- PF- QUI T

#PDA- PF- TEST

#PDA- PF- LEFT

#PDA- PF- Rl GHT
#PDA- PF- HELP

#PDA- PF- AVAI LABLEL
#PDA- CV3

#PDA- CV4

#PDA- CV5

>000000F>>>>>>>>> >

#PDA- SCROLL- | NDI CATOR

Dynam c attribute characters
fromthe control record. The

foll owi ng i ndex val ues represent
1=Default, 2=Intensify, 3=Blink,
6=Reversed, 7=Bl ue, 8=Green,

12=Tur quoi se, 13=Yell ow.

#PDA- DYNAM C- ATTR- CHARS A

Passed paraneter from code franme
#PDA- CV6

#PDA- CV7

#PDA- CV8

#PDA- SCROLL- | NDI CATOR

>000

—-150 -

2

NNNNNNNNNDNNDN

IN

Rl N N O SO NG NI N NN

=

4

| *
| *
| *
| *

Hel p key nane.

Not used by default.
Not used by default.
Not used by default.

nunber associated with each
the nunbers of the available
use.

(1:12)

/* REDEF. BEG N : #PDA- PF- NUVMBER
/* Main menu key nunber.

/* Return key nunber.

/* Quit key nunber.

/* Test key nunber.

/* Bkwrd key nunber.

/* Frwd key nunber.

/* Left key nunber.

/* Ri ght key nunber.

/* Hel p key nunber.

/* Not used by default.

/* Not used by default.

/* Not used by default.

above array except the 'PF
for easy conparison to *PF-KEY.
(1:12)

/* REDEF. BEGI N : #PDA- PF- KEY
/* PFnn where nn = nain key.
/* Not used by default.

/* Special characters in T node
/* Colum headings in T node
/* CV5

/* CV 6

/* CcvV7

/* CV 8

/* Scroll region indicator
4=Italics, 5=Underline,

9=Whi te, 10=Pi nk, 11=Red,
(1:13)

/* CV 6

/* Ccv7

/* CV 8

/* Scroll region indicator

Creating New Models

Dynam c attribute characters
fromthe control record. The
foll owi ng i ndex val ues represent
1=Default, 2=Intensify, 3=Blink, 4=Italics, 5=Underline,
6=Reversed, 7=Bl ue, 8=Green, 9=White, 10=Pi nk, 11=Red,
12=Tur quoi se, 13=Yell ow.

2 #PDA- DYNAM C- ATTR- CHARS A 1 (1:13)

* % % ok k% ok

*

* Passed paraneter from code frane
2 #PDA- FRAVE- PARM A 32
2 #PDA- SYSTEM A 32 /* System nust exist in dict.

*

CU—PDA contains the fields described in the following sections.

#PDA-MODE

This field (format A2) identifies the programming mode. The value for this field is
the programming mode specified on the Maintain Models panel. Valid values for
this field are S (structured), SD (structured data), and R (reporting) mode.

#PDA-OBJECT-TYPE

This field (format Al) identifies the type of module generated. The value for this
field is the module type specified on the Maintain Models panel. This field is useful
when a model subprogram is associated with multiple models that use different
module types. In this case, the presence or format of certain generated code may be
dependent on the type of module generated.

#PDA-MODIFY-HEADER1

This field (format A60) contains the description specified on the Maintain Models
panel. The maintenance input panels now use the variable #HEADER1 instead of
#PDA-MODIFY-HEADERI1. If the variable #HEADER1 has not been assigned a
value, it will be assigned the contents contained in #PDA-MODIFY-HEADERI.

—-151 -

Natural Construct Administration and Modeling User’s Manual

#PDA-MODIFY-HEADER2

This field (format A54) contains the description specified on the Maintain Models
panel. The maintenance input panels now use the variable #HEADER2 instead of
#PDA-MODIFY-HEADERZ2. If the variable #HEADER2 has not been assigned a
value, it will be assigned the contents contained in #PDA-MODIFY-HEADER2.

#PDA-LEFT-PROMPT

This field (format A11) is redefined into the #PDA-LEFT-MORE-PROMPT field
(format A9). The #PDA-LEFT-MORE-PROMPT field indicates the current date.
You place this field as an output field in the top left corner of all maintenance pan-
els. (If you require more than nine bytes, you can use the full length of A11.)

#PDA-RIGHT-PROMPT

This field (format A11) is redefined into the #PDA-RIGHT-MORE-PROMPT field
(format A9). The #PDA-RIGHT-MORE-PROMPT field indicates the current panel
and the total number of panels (1 of 4, for example) Place this field as an output
field in the top right corner of all maintenance panels. (If you require more than
nine bytes, you can use the full length of A11.)

#PDA-PHASE

This field (A1l format) identifies the current phase of the Natural Construct nucleus
(see the CSLPhase data area for an example). Valid values for this field are A (post-
generation), B (batch), C (clear), D (default), G (generation), L (translate), M (main-
tenance), P (pre-generation), R (read), U (sample user exit), and V (save). The value
for this field is typically controlled by the Natural Construct nucleus and should
not be manipulated locally.

Note: Maintenance subprograms are also invoked prior to SAMPLE processing
in the User Exit editor (in which case, the phase is U) and prior to the gen-
eration phase (in which case, the phase is G).

—-152 -

Creating New Models

Since some subprograms are invoked during more than one phase, this field acti-
vates the subprogram logic for the current phase. For example, the maintenance
subprograms performed during the maintenance phase (M) are invoked (with data
stacked) during the generation (G) and sample user exit (U) phases. It may be in-
appropriate for the maintenance subprogram to perform certain processing during
any of these phases.

#PDA-DIALOG-METHOD

This field (format I1) is reserved for future use.

#PDA-TRANSLATION-MODE

This field (format L) is reserved for future use.

#PDA-USERX-NAME
This field (format A10) is for internal use only.

- 153 -

Natural Construct Administration and Modeling User’s Manual

#PDA-PF-NAME

This field (format A10/1:12) is an array containing the names of the standard PF-
keys and is redefined into the following fields (format A10):

Field Description

#PDA-MAIN-NAME Main menu key name.

#PDA-RETURN-NAME
#PDA-QUIT-NAME
#PDA-TEST-NAME
#PDA-BACKWARD-NAME
#PDA-FORWARD-NAME
#PDA-LEFT-NAME
#PDA-RIGHT-NAME
#PDA-HELP-NAME
#PDA-AVAILABLE1-NAME
#PDA-AVAILABLE2-NAME
#PDA-AVAILABLE3-NAME

Return key name.
Quit key name.

Test key name.
Backward key name.
Forward key name.
Left key name.
Right key name.
Help key name.

Not used, by default.
Not used, by default.

Not used, by default.

The names are in the same order as the key settings specified on the Natural Con-
struct Control record. The name for PF1 is stored in the first position, PF2 is stored
in the second position, etc.

You can define special PF-keys for maintenance subprograms (or sample genera-
tion subprograms) by specifying the desired PF-key values and names on the
Maintain Subprograms panel (S function on the Administration main menu).

—154 -

Creating New Models

Occasionally, a subprogram may need to modify its PF-key assignments based on
internal program functions and parameter values. If this is the case, place this ar-
ray of PF-key names on the model panels and set the appropriate PF-key names
(assuming your model supports variable PF-keys).

If a subprogram requires PF-keys for non-standard functions that are not known
at compile time, display this array on the map (instead of using the SET KEY state-
ment and the KD option of the FORMAT statement).

#PDA-PF-NUMBER

This field (format N2/1:12) is an array containing the PF-keys that support the
standard PF-key functions and is redefined into the following fields (format N2):

Field Description
#PDA-MAIN Main menu key number.
#PDA-RETURN Return key number.
#PDA-QUIT Quit key number.
#PDA-TEST Test key number.
#PDA-BACKWARD Backward key number.
#PDA-FORWARD Forward key number.
#PDA-LEFT Left key number.
#PDA-RIGHT Right key number.
#PDA-HELP Help key number.
#PDA-AVAILABLE1 Not used, by default.
#PDA-AVAILABLE2 Not used, by default.
#PDA-AVAILABLE3 Not used, by default.

—155 -

Natural Construct Administration and Modeling User’s Manual

The values in this array assign a PF-key function to a PF-key number (for indexing
on the #PDA-PF-NAME table). The first occurrence contains the PF-key number
associated with the “main” function, the second occurrence contains the PF-key
number associated with the “return” function, etc.

To include additional PF-keys, use the PF-key corresponding to the numbers as-
signed to #PDA-AVAILABLE1 through #PDA-AVAILABLES.

#PDA-PF-KEY

This field (format A4) is an array corresponding to the #PDA-PF-NUMBER array
(see the previous section) except the values have a PF- prefix. This makes it easy
to compare the value of a *PF-KEY system variable to one of the following fields
(format A4):

Field Description

#PDA-PF-MAIN PFnn, where nn is the main menu key number.
#PDA-PF-RETURN PFnn, where nn is the return key number.
#PDA-PF-QUIT PFnn, where nn is the quit key number.
#PDA-PF-TEST PFnn, where nn is the test key number.
#PDA-PF-BACKWARD PFnn, where nn is the backward key number.
#PDA-PF-FORWARD PFnn, where nn is the forward key number.
#PDA-PF-LEFT PFnn, where nn is the left key number.
#PDA-PF-RIGHT PFnn, where nn is the right key number.
#PDA-PF-HELP PFnn, where nn is the help key number.
#PDA-PF-AVAILABLE1 Not used (by default).
#PDA-PF-AVAILABLE2 Not used (by default).
#PDA-PF-AVAILABLES3 Not used (by default).

—156 -

Creating New Models

Note: The PF-key variables defined in this PDA allow your models to automat-
ically use the PF-key values and names specified on the Natural Con-
struct Control record. If you do not require this flexibility, you can use
hardcoded PF-key values and names.

#PDA-TITLE

This field (format A25) contains the title of the module that is generated, which is
required for the generation process. The title is used to identify the module for the
List Generated Modules function on the Generation main menu. You can place this
field on the model maintenance panels.

#PDA-GEN-PROGRAM

This field (format A8) contains the name of the module that is generated, read, or
saved. The value for this field is the module name specified on the Generation main
menu. You can place this field on the first maintenance panel for the model.

#PDA-MODEL-VERSION

This field (format N2.2) contains the number of the Natural Construct version used
to generate the model.

#PDA-HELP-INDICATOR

This field (format A4) contains the help indicator for maps. The value for this field
is the help indicator specified on the Control record (an asterisk (*), for example).

#PDA-USER-DEFINED-AREA
This field (format A1/1:100) is available to the user.

- 157 -

Natural Construct Administration and Modeling User’s Manual

#PDA-UNDERSCORE-LINE

This field (format A80) contains the 1- to 4-character set used to create the under-
score line for text on maps. The specified set is repeated until all spaces are filled
(80, by default). The value for this field is the underscore character set specified on
the Natural Construct Control record. For example, if “----” is specified, the under-
score line is:

Or if “++” is specified, the underscore line is:

e o T o S 2 S R o o S I

#PDA-RIGHT-PROMPT-OF

This field (format A4) contains the text used in the right prompt for maps. The val-
ue for this field is the “of” indicator specified on the Natural Construct Control
record (“1” of “4”, for example).

#PDA-DISPLAY-INDICATOR

This field (format A4/1:10) is an array corresponding to the position indicators used
on maps. The values for this field are the position indicators specified on the Nat-
ural Construct Control record (“1, 2, 3...”, for example).

#PDA-CURS-FIELD

This field (format I4) contains the cursor position for dynamic translation on maps.

- 158 —

Creating New Models

#PDA-CVn

These fields (format C) are control variables (#PDA-CV1 through #PDA-CV8) used
on maps to dynamically control the text displayed on a panel. These control vari-
ables are:

Control Variable Description

#PDA-CV1 Controls field prompts.
#PDA-CV2 Controls prompt headings.
#PDA-CV3 Controls special characters.
#PDA-CV4 Controls column headings.
#PDA-CV5 Not currently used.
#PDA-CV6 Not currently used.
#PDA-CV7 Not currently used.
#PDA-CVS8 Not currently used.

#PDA-SCROLL-INDICATOR

This field (format A4) contains the scroll region indicator(s) used on maps. The val-
ue for this field is the character(s) specified on the Natural Construct Control
record (“>>”, for example).

#PDA-DYNAMIC-ATTR-CHARS

This field (format A1/1:13) is an array containing the default dynamic attribute
characters. The values for this array are the dynamic attributes specified on the
Natural Construct Control record. Dynamic attribute characters allow the devel-
oper to embed special characters within text that change how the text is displayed.

—159 -

Natural Construct Administration and Modeling User’s Manual

These dynamic attribute characters correspond to the following index occurrences:

Attribute Index Occurrence
Default return 01
Intensify 02
Blinking 03
Italics 04
Underline 05
Reverse video 06
Blue 07
Green 08
White 09
Pink 10
Red 11
Turquoise 12
Yellow 13

The CSUDYNAT subprogram uses these settings for the Natural dynamic at-
tribute parameter (DY=). For a description of CSUDYNAT, see CSUDYNAT
Subprogram, page 393.

—-160 -

Creating New Models

#PDA-FRAME-PARM

This field (format A32) contains different values depending on the type of subpro-
gram. The Natural Construct nucleus can set this field before the code frame
subprograms are invoked; this field is always set before the sample user exit sub-
programs are invoked.

For code frame generation subprograms, this field contains the value of the con-
stant literal entered in the subprogram line in the code frame (next to the
Parameter prompt). For sample user exit subprograms, this field contains the
name of the user exit for which the sample was invoked.

#PDA-SYSTEM

This field (format A32) contains the default system name when Predict program
entries are generated from within Natural Construct. (Programmers/analysts can
document generated modules in Predict by pressing the optns PF-key on the Gen-
eration main menu before saving or stowing the module.) Place this field on the
first maintenance panel for the model.

Any supplied model that generates a dialog also uses this field as part of the key to
access help information. The system value corresponds to the Major component of
the help key.

CSASTD PDA
CSASTD PDA contains the fields described in the following sections.

Note: The CSASTD PDA is used by every model. It passes messages between
subprograms and is typically used for error handling.

MSG

This field (format A79) is used with the RETURN-CODE field (see RETURN-
CODE, page 162). It is used to pass messages between the Natural Construct nu-
cleus and the model subprograms. It should be displayed on the message line of all
maintenance panels and reset after all inputs.

-161 -

Natural Construct Administration and Modeling User’s Manual

MSG-NR
This field (format N4) is not currently used.

MSG-DATA

This field (format A32/1:3) contains the values for embedded substitution strings.
If a message contains the :1:, :2:, or :3: substitution strings, you can supply values
to these strings in MSG-DATA(1), MSG-DATA(2), and MSG-DATA(3),
respectively.

RETURN-CODE

This field (format Al) is used with the MSG field (see MSG, page 161). When a
module is generated, the model subprograms or related code frame subprograms
may encounter problems. When this happens, the subprogram should assign the
RETURN-CODE field before returning to the Natural Construct nucleus. It should
also assign an error message to the MSG field.

If the value assigned to the RETURN-CODE field is blank (informational message)
or W (warning message), a warning is issued by Natural Construct and a message
is displayed in the Status window. The developer can either ignore the warning
and continue the generation process or terminate generation.

If the value assigned to the RETURN-CODE field is C (communication error) or E
(error), the error message is displayed but the developer cannot continue the gen-
eration process.

The CSLRCODE local data area contains valid return codes for the RETURN-
CODE field.

ERROR-FIELD

This field (format A32) identifies a field in error. The field name is displayed with
the error message.

ERROR-FIELD-INDEX1/2/3

These fields (format P3) identify occurrences of fields in error. If the error field is
an element of an array, they identify the specific occurrence of the field in error.

-162 -

Creating New Models

Step 7: Create the Translation LDAs and Maintenance

Maps

After defining the parameters and creating the parameter data area (PDA) for the
model, if needed create the translation LDAs to support multilingual specification
panels and the maintenance maps (panels) to accept parameters from the develop-
er. These procedures are described in the following sections.

Translation LDAs

To support multilingual text and messages, each maintenance panel can use up to
five translation local data areas (LDAs). These LDAs contain the names of the
fields that can be translated. You cannot display a panel in another language un-
less the module that invokes the panel has a corresponding translation LDA.

All translation LDAs must have following format:

Local CUBANAL Li brary SYSCST DBID 18 FNR 4
Command >+
I T L Nane F Leng I ndex/Init/EM Narme/ Comment
L R R e R
* * **GAG TRANSLATI ON LDA
* * * used by map CUBAMAO.
1 CUBANMAL
2 TEXT /* Corresponds to syserr nessage
3 #GEN- PROGRAM A 20 INIT< *2000.1,.'>
3 #SYSTEM A 20 INIT< *2000.2,.'>
3 #GDA A 20 INIT< *2000.3,.'>
3 #TITLE A 20 INIT< *2001.1,.'>
3 #DESCRI PTI ON A 20 INIT< *2001.2,.'>
3 #GDA- BLOCK A 20 INIT< *2001.3,.'>
R 2 TEXT
3 TRANSLATI ON- TEXT
4 TEXT- ARRAY A 1 (1:120)
2 ADDI Tl ONAL- PARVB
3 #MESSAGE- LI BRARY A 8 I NI T<' CSTLDA >
3 #LDA- NAME A 8 | NI T<' CUBAMAL' >
3 #TEXT- REQUI RED L I NIl T<TRUE>
3 #LENGTH OVERRI DE | 4 /* Explicit length totranslate

CUBAMAL Translation LDA for the Batch Model

- 163 -

Natural Construct Administration and Modeling User’s Manual

In this example, the fields in CUBAMAL correspond to the following fields on the
Standard Parameters panel for the Batch model:

Field Name in LDA Field Name on Panel
#GEN-PROGRAM Module

#SYSTEM System

#GDA Global data area
#TITLE Title

#DESCRIPTION Description
#GDA-BLOCK With block

When naming your translation LDAs, we recommend using the name of the mod-
ule that uses the LDA and adding an “L.” in the last position. For example, the
CUBAMA maintenance subprogram uses the CUBAMAL translation LDA.

The sum of the lengths of all fields in the translation LDA must match the length
of the text array. In the CUBAMAL example, each of the six fields has a length of
20 and the text array is 1:120 (6 x 20).

~ 164 -

Creating New Models

To support multilingual specification panels, use SYSERR numbers to assign the
INIT values for the translation LDA fields. The translation LDAs are passed
through the CSUTRANS utility, which expects the structure on the previous page.
CSUTRANS also expects the SYSERR INIT values in the following format:

Position

Format

Byte 1

Bytes 2-5

Note:

Byte 6

Must be an asterisk (¥).

Must be numeric and represent a valid SYSERR number.

The first five bytes are mandatory (bytes 1-5); these values are
used to retrieve the text associated with the corresponding
SYSERR number and the current value of the *Language
Natural system variable.

If the text for the current language is not available,
CSUTRANS follows a modifiable hierarchy of *Language
values until text is retrieved (you can define this hierarchy in
the DEFAULT-LANGUAGE field within the CNAMSG local
data area). As the original development language, English
(*Language 1) should always be available.

CSUTRANS does not perform any substitutions (using
:1::2::3:). To perform substitutions, you must call the
CNUMSG subprogram.

Can be a period (.), which indicates that the next byte is a valid
position value.

—165 -

Natural Construct Administration and Modeling User’s Manual

Position

Format (continued)

Byte 7

Byte 8

Byte 9

Note:

Can be a position value. Valid values are 1 to 9, A (byte 10), B
(byte 11), C (byte 12), D (byte 13), E (byte 14), F (byte 15), and
G (byte 16). For example, *2000.2 identifies the text for
SYSERR number 2000, position 2 (as delimited by a/ in
SYSERR). If the message for SYSERR number 2000 is Module/
System/Global data area, only System is retrieved.

If you reference the same SYSERR number more than once in
a translation LDA, define the INIT values on consecutive lines
to reduce the number of calls to SYSERR; the position values
for a SYSERR number can be referenced in any order.

To minimize confusion, we recommend you use the .n notation
even when there is only one message for the SYSERR number.

Can be a comma (,), which indicates that the next byte or bytes
contain special format characters. Values specified before the
comma (,) indicate what text to retrieve; values specified after
the comma indicate how the text is displayed.

Although you can use a comma in byte 6 (instead of a period),
we recommend that you always use the .n position indicator in
bytes 6 and 7.

After the comma, can be one of the following:

Indicates that the first position after the field name is blank
and the remainder of the field prompt is filled with periods
(Module name:, for example).

Indicates that the text is centered using the specified field
length override (see description of Byte 10). If you do not
specify the override length, Natural Construct uses the actual
field length.

Indicates that the text is left justified (this is the default).

Indicates that the text is right justified.

- 166 —

Creating New Models

Position Format (continued)

/" Indicates that a length override value follows.

Bytes 10-16 After the / override length indicator (see above), indicates the
actual override length in bytes.

Note: For more information about referencing SYSERR numbers, refer to Us-
ing SYSERR References, page 496.

If you want to use the override length notation (*0200.4,+/6, for example) and the
LDA field is too small (A6, for example), you can define a larger field (A12, for ex-
ample), redefine it using a shorter display value, and then use the override length
notation. For example:

01 FI ELD- NAME Al I N T<' *0200. 4+/ 6' >
01 Redefine #FI ELD- NAMVE
02 #SHORT-FI ELD-NAME A6

Maintenance Maps

Normally, each maintenance subprogram is associated with a different mainte-
nance map. You can use a layout map as a starting layout for your maintenance
maps and then list the model PDA fields in the Map editor and select the desired
fields. For a standard maintenance map, use the CDLAY layout map. For a multi-
lingual maintenance map, you can also use the CDLAY layout map and remove all
text except the lines containing the first and second headings. (For an example of
a multilingual maintenance map, see the CU--MAO map in the SYSCST library.)

You can also use the Natural Construct Map model to create your maintenance
maps. For a description of the Map model, see the applicable chapter of Natural
Construct Generation User’s Manual.

- 167 —

Natural Construct Administration and Modeling User’s Manual

Step 8: Create the Model Subprograms

You can use the supplied models to generate the subprograms described in this
step. For a detailed description of a particular model, refer to the applicable chap-
ter in this manual. Chapters 5 to 14 describe the model generation models in the
order they are implemented during the generation process.

Maintenance Subprograms

Generated using the CST-Modify model, these subprograms receive the specifica-
tion parameters (#PDAX variables in the model PDA) from the developer and
should ensure that the parameters are valid. These subprograms can also set con-
dition codes and assign derived PDA variables.

Maintenance subprograms are executed in the same order as they appear on the
Maintain Models panel. Usually, there is one maintenance subprogram for every
left/right (horizontal) maintenance panel. Data edits should only be applied if the
developer presses Enter or PF11 (right). Either the maintenance subprogram or
the maintenance map can validate the parameters.

You should only trap PF-keys that perform specialized functions related to the pan-
el. If you want the PF-key settings to be dependent on the default settings specified
on the Control record, the subprogram should not contain hardcoded PF-keys
(check the PF-key values using the variables specified in CU—PDA).

Note: Youcan define special PF-keys and window settings for each maintenance
subprogram (see Maintain Subprograms Function, page 61).

Note: A maintenance subprogram can test the value of CU—PDA.#PDA-
PHASE to identify the phase during which it was invoked.

For an example of a generated maintenance subprogram, see the CUMNMA and
CUMNMB subprograms in the SYSCST library.

For information about the CST-Modify model, see CST-Modify Model, page 239.

- 168 —

Creating New Models

When are Maintenance Subprograms Invoked?

The Natural Construct nucleus invokes the maintenance subprograms in the fol-
lowing situations:

Generation Main Menu

Function: M Module: TEST Panel: 2
Invokes the second maintenance panel, and:

If the developer presses Enter, invokes the Generation main menu.

If the developer presses PF11 (right), invokes the third panel (if there is one).

If the developer presses PF10 (left), invokes the first panel and displays the mes-
sage: Beginning of specification panels.

Function: M Module: TEST Panel:
Invokes the first maintenance panel, and:

If the developer presses Enter or PF11 (right), invokes the second panel (if there is
one).

If the developer presses PF10 (left), invokes the first panel and displays the mes-
sage: Beginning of specification panels.

Function: G Module: TEST Panel:

Invokes all maintenance panels to ensure that all parameters have been edited be-
fore generation. The input panels are not displayed unless an error is encountered.

User Exit Editor
> SAMPLE

Invokes all maintenance panels so you can ensure that all parameters have been
edited before generation. The input panels are not displayed unless an error is
encountered.

-169 —

Natural Construct Administration and Modeling User’s Manual

Pre-generation Subprogram

Generated using the CST-Pregen model, this subprogram is invoked either after all
maintenance subprograms are executed during the generation phase or after the
SAMPLE command is issued from the User Exit editor. It is the first user subpro-
gram invoked. It assigns all true condition values (see the following example),
based on user-supplied input parameters or other calculated values. (All #PDAC-
condition values are reset before the generation process is started.)

This subprogram should also calculate the values of any #PDA variables required
by subsequent generation subprograms. For simple models that do not have code
frames, this subprogram can also perform the functions of a generation subpro-
gram. (Condition code values and derived fields can also be assigned within the
maintenance subprograms.)

For an example of a generated pre-generation subprogram, see the CUMNPR sub-
program in the SYSCST library.

For more information about the CST-Pregen model, see Parameters for the CST-
Pregen Model, page 259.

Generation Subprograms

Because the lengths and contents of certain code frame parameters change based
on user-supplied input values or information in Predict, these parameters must be
supplied by the generation subprograms. These subprograms write statements to
the Natural edit buffer, based on user-supplied input parameters or other calculat-
ed values.

To write to the edit buffer, include a DEFINE PRINTER(SRC=1) OUTPUT
'SOURCE' statement in the subprogram that routes the output to the source work
area. To allow models to be ported to multiple platforms, use the CU--DFPR copy-
code member to define the SRC printer.

All WRITE (SRC), DISPLAY (SRC), and PRINT (SRC) statement output for your
print file is written to the edit buffer. Use the NOTITLE option on each of these
statements. If a DISPLAY statement is used in the subprogram, also use the NO-
HDR option. When trailing blanks should be suppressed in variable names, the
PRINT statement can be a useful alternative to the WRITE statement. However,
you may want to increase the line length of the edit buffer when using the PRINT
statement, so variable names are not split at the - character.

-170 -

Creating New Models

Because generation logic can be highly complex, these subprograms allow ultimate
flexibility. However, they are less maintainable than code frame statements since
you must change Natural programs to modify the generated code.

Generation subprograms can also accept the #PDA-FRAME-PARM constant code
frame parameter in CU—PDA. This parameter allows a subprogram to be invoked
several times within the generation process. Each time the generation subprogram
is invoked, it can use the value of this parameter to determine what to generate.

You can invoke the generation subprograms by specifying line type N in the T
(type) column in the Code Frame editor. You can also specify the constant param-
eter value on this line.

The following example of the Code Frame editor displays the code frame in which
the CUMYGVAR subprogram is invoked. The DEFINE and INIT parameters are
passed to this subprogram:

Frame GENSUBP SI ZE 172

Description Exanpl e of generation subprogram FREE 36572

> >+ ABSX X-Y_S21 L1
ek Lok 20k Bk A+ B+ 6+ 7. T C

Subpr ogram CUMYGVAR Par anet er : DEFI NE N

Subprogram CUMYGVAR Paraneter: |NT N

Example of a Generation Subprogram in a Code Frame
Example of a Generation Subprogram

For an example of a generated generation subprogram, see the CUMNGGL subpro-
gram in the SYSCST library.

-171 -

Natural Construct Administration and Modeling User’s Manual

Post-generation Subprogram

Generated using the CST-Postgen model, this subprogram provides the values for
the substitution parameters in the code frames identified by an ampersand (&).
When the developer enters G on the Generation main menu, this subprogram is in-

voked as the final stage of the generation process.

During the generation process, code lines specified in the code frame are written to
the edit buffer, as well as the output of the generation subprogram contained in the
code frame. Substitution parameters are included in the edit buffer exactly as they
appear in the code frame. After this phase of the process, the content of the edit

buffer can be the following:

> > + Program : ABCSUBS Lib: CSTDEV

0010 DEFI NE DATA LOCAL
0020 01 #MAX- LI NES(P3) OCONST<&MAX- SELECTI ONS>
0030 01 #LI NE- NR(P3/ 1: #MAX- LI NES)

0040 01 #l (P3)

0050 END- DEFI NE

0060 FOR #1 = 1 TO #MAX- LI NES

0070 ASSI GN #LI NE-NR(#l) = #lI

0080 END- FOR

0090 .

Example of Edit Buffer After the Generate Object Phase

The post-generation subprogram substitutes the code frame parameters with the
corresponding substitution values by stacking the substitution parameters and
their corresponding values. Use the STACK TOP DATA FORMATTED statement

to stack these values (see the example on the following page).

-172 -

Creating New Models

Example of a post-generation subprogram

DEFI NE DATA
PARAMETER USI NG CUMYPDA
PARAVETER USI NG CU—PDA
PARAMETER USI NG CSASTD

END- DEFI NE

* *

** Stack change commands

STACK TOP DATA FORMATTED ' &KEY' #PDAX- KEY

STACK TOP DATA FORMATTED ' &KEY- FORVAT' #PDA- KEY- FORVAT
END

#PDAX-KEY must contain the &KEY substitution parameter value.

#PDA-KEY-FORMAT must contain the &KEY-FORMAT substitution parameter
value.

Stack Order of Substitution Parameters

Stacked parameters build a series of CHANGE commands that are applied by the
nucleus after the post-generation subprogram is finished executing. To change the
substitution variables embedded within a longer string, these CHANGE com-
mands use the ABS (Absolute) option. If one substitution variable is a substring of
another substitution variable, stack the longer substitution variable last. Since the
STACK TOP option supplies the substitution values, the changes to the longer sub-
stitution value are applied first.

Example of the STACK TOP option

STACK TOP DATA FORMATTED ' &KEY' #PDAX- KEY
STACK TOP DATA FORVATTED ' &KEY- FORVAT' #PDA- KEY- FORVAT

Blanks versus Nulls

By default, the substitution parameter is replaced by one blank character if the
second parameter (the substituted value) is blank. If you want to replace a blank
substitution value with a null string, use the following notation:

STACK TOP DATA FORMATTED ' &FI LE- PREFI X' #PDA- FI LE- PREFI X ' NULL'

-173 -

Natural Construct Administration and Modeling User’s Manual

Clear Subprogram

Generated using the CST-Clear model, this subprogram resets the #PDA-USER-
AREA variables in the model PDA. Only non-alphanumeric variables are reset.
The clear subprogram can also assign initial default values for user parameters.

If you do not specify a clear subprogram, the Clear function on the Generation main
menu sets #PDA-USER-AREA to blanks. The edit buffer is always cleared, regard-
less of whether the model uses a clear subprogram.

When are Clear Subprograms Invoked?

The Natural Construct nucleus invokes the clear subprogram in the following
situations:

When the developer invokes the Clear Edit Buffer function on the Generation main
menu.

When the developer changes the model name and the new model uses a different
PDA.

Immediately before the Read Specifications function is executed on the Generation
main menu.

Example of a clear subprogram

DEFI NE DATA
PARAVETER USI NG CUMYPDA
PARAMETER USI NG CU—PDA
PARAMETER USI NG CSASTD

END- DEFI NE

* *

**|nitialize non-al pha fields and set default val ues.
RESET #PDAX- MAX- PANELS #°DA- KEY- LENGTH

ASSI GN #PDAX- GDA = ' CDGDA

ASSI GN #PDA- SYSTEM = *LI BRARY- | D

END

174 -

Creating New Models

Save Subprogram

Generated using the CST-Save model, this subprogram writes the specification pa-
rameters to the edit buffer. To read a previously-generated program, the model
must have both a save and a read subprogram. The save subprogram must contain
a separate WRITE statement for each specification parameter (#PDAX variable).
Use the equal (=) notation to include the variable name with the contents of the
variables. For example:

WRI TE(SRC) NOTI TLE ' =' #PDAX-vari abl e- nane

Note: Use a separate WRITE statement for each component of an array.

Example of a save subprogram

DEFI NE DATA
PARAMETER US| NG CUMYPDA
PARAMETER US| NG CU-PDA
PARAMETER US| NG CSASTD
LOCAL
01 #l (P3)

01 #TEMP(A25)

END- DEFI NE

* %

DEFI NE PRI NTER (SRC=1) OUTPUT ' SOURCE
FORMAT(SRC) LS=150
* *

** Wite out paraneters to be saved.
WRI TE(SRC) NOTI TLE ' =" #PDAX- GDA
WRI TE(SRC) NOTI TLE ' =" #PDAX- MAI N- MENU- PROGRAM
WRI TE(SRC) NOTI TLE ' =" #PDAX- QUI T- PROGRAM
FOR #1 =1 TO 4
| F #PDAX- DESC(#1) NE ' ' THEN
COVPRESS ' #PDAX- DESC(' #| '):' TO #TEXT LEAVI NG NO
PRI NT(SRC) NOTI TLE #TEXT #PDAX- DESC(#l)
END- | F
END- FOR
END

- 175 -

Natural Construct Administration and Modeling User’s Manual

Note: When compressing an index value that can be more than one digit in
length, redefine a numeric index with an alpha string and compress the
alpha string to preserve leading zeros.

Natural Construct changes the output of this subprogram to:
**SAG vari abl e-name: variable contents

For example, Natural Construct changes

#PDAX- MAP- NAME: MYMAP

to

**SAG MAP- NAME: MYMAP

These lines are placed at the beginning of the generated module.

Read Subprogram

Generated using the CST-Read model, this subprogram reads the specification pa-
rameters from a previously-generated module. It contains a series of INPUT
statements that accept the data previously placed in the Natural stack. The read
subprogram is invoked when the developer invokes the Read Specifications func-
tion on the Generation main menu.

Before the read subprogram is invoked, all **SAG parameter values are placed on
the Natural stack. The read subprogram repeats a series of INPUT statements to
accept the stacked parameters and assign them to the correct PDA variables. This
subprogram must correspond to the save subprogram that writes the **SAG pa-
rameter lines. The read subprogram can also read common parameters from a
different model.

Note: Natural Construct invokes the clear subprogram before invoking the read
subprogram. It is not necessary to save null parameter values.

-176 -

Creating New Models

Example of a Read Subprogram

For an example of a generated read subprogram, see the CUMNR subprogram in
the SYSCST library.

Sample User Exit Subprograms

Generated using the CST-Frame model, these subprograms help the developer cre-
ate user exit code by providing a starting sample. They can be simple or
complicated, depending on the model. When creating a sample subprogram, you
can include additional parameters to give the developer more control over what is
generated into the user exit. To pass additional information to the sample subpro-
gram, you can use the CU—PDA #PDA-FRAME-PARM variable.

All maintenance subprograms and the pre-generation subprogram are automati-
cally invoked before the sample subprograms are executed. This ensures that the
current specification parameters are valid and the conditions are set.

To define a sample subprogram, enter .E at the beginning of a user exit line in the
Code Frame editor. For more information, see Add User Exit Points, page 132.

Example of a Sample Subprogram

For an example of a generated sample subprogram, see the CUFMSRIN subpro-
gram in the SYSCST library.

Document Subprogram

Generated using the CST-Document model, this subprogram creates an extended
Predict description. To support the generation of a Predict extended description for
the generated modules, you must create a document subprogram for your model.
This subprogram creates a free-form description of the generated module using the
information entered on the model specification panels. You can write information
in any language for which you have translated help text members. For more infor-
mation, see Using SYSERR References for Multilingual Support, page 493.

The document subprogram writes the model description to Predict when the devel-
oper turns this option on (using the optns PF-key on the Generation main menu)
and invokes the Save or Stow function. The functions available on the Generation
main menu are described in the Natural Construct Generation User’s Manual.

- 177 -

Natural Construct Administration and Modeling User’s Manual

Example of a Document Subprogram

For an example of a generated document subprogram, see the CUMND subpro-
gram in the SYSCST library.

Testing the Model Subprograms

Because a model contains several components, it is often better to test each compo-
nent individually, or test related subprograms, without the overhead of the
Natural Construct nucleus. After you define the model PDA, maintenance maps,
and subprograms, you can test the individual components of the model by issuing
the CSUTEST command from the SYSCST library. This supplied utility invokes
the Single Module Test Program panel:

CSUTEST ***x* Natural Construct ***** CSUTESML
Aug 01 - SINGLE MODULE TEST PROGRAM -
Code Function *Model :
——————————————————————— Nunmber all subprograns to be executed
R Rel ease Variabl es | |
* Execute All Subp. \ |
1-9 Execute One Subp. Cear : \%
E Edit source Mod 1: Mod 6:
C Clear Edit Buffer Mod 2: Md 7:
? Hel p Mod 3: Mod 8:
. Term nate Mod 4: Mbd 9:
——————————————————————— Mod 5 Mbd 10:
_ Pregen: Save
Sour ce Docunt : Post gn:
Li nes
Tot al : 0 Frame Paraneter or Exit Nane

_ Oher :

_ Oher :

_ Oher :

_ Oher :
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -

hel p quit

Single Module Test Program Panel

A typical test invokes one or more maintenance subprograms (indicated by Mod n),
the pre-generation subprogram, and a generation subprogram (in that order).

-178 -

Creating New Models

Note: The Single Module Test Program panel is a utility; it is not available in
dynamic translation mode.

The fields on the Single Module Test Program panel are:

Field Description

Code Function Functions available through this panel and the codes that
invoke each function. Enter the codes in the unnamed
input field displayed below the Code field. Valid codes are:

R Resets the parameter data area (PDA) passed to all model
subprograms.

Executes all model subprograms. Subprograms marked
with a number are executed in order from 1 to 9. Code
generated into the edit buffer by a subprogram is delimited
by comments containing the name of the subprogram.

1-9 Executes the specified model subprogram. To execute a
specific subprogram, enter a number from 1 to 9. If you
enter 1, for example, all subprograms marked 1 are
executed in the same order they are displayed on the panel.

E Invokes the appropriate Natural editor to edit source.

C Clears the edit buffer. You should clear the edit buffer
before testing the next subprogram.

? Displays help for the panel.

Terminates the Test utility and displays the Natural Next
prompt (Direct Command box for Unix).

-179-

Natural Construct Administration and Modeling User’s Manual

Field Description (continued)

Model To display the names of the subprograms associated with a
model, enter the name of the model in this field.

The following information is displayed:

[CSUTEST **%xx Natural Construct ***=** CSUTESML
Aug 01 - SINGLE MODULE TEST PROGRAM -
Code Function *Model : BROWSE- SELECT.
B R LT Nunmber all subprograns to be executed
R Rel ease Vari abl es | |
* Execute Al Subp. \% |
1-9 Execute One Subp. _ Oear : CUSLC \
E Edit source _ Md 1: CUSCVA _ Md 6: CUSCMG
C Clear Edit Buffer _ Md 2: cusLMB Md 7:
? Hel p _ Md 3: cuscme Md 8:
. Term nate _ Md 4: CUSLME Mbd 9:
B LR _ Md 5: CUSLMF Mod 10:
_ _ Pregen: CUSLPR _ Save : CUSCsT
Sour ce _ Docunt: CUSLD _ Postgn: CUSLPS
Li nes
Tot al : 0 Franme Parameter or Exit Nane
_ Qher :
_ Qher :
_ Qher
_ Qher :
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
hel p qui t
New nodel definition read.

Single Module Test Program Panel — After Entering a Model Name

Enter a number beside each subprogram you want to
execute and then enter the same number in the Code field.

Note: Ifthe generation subprograms’ test conditions and
variables are set in the pre-generation or maintenance
subprograms, invoke the pre-generation or maintenance
subprograms first.

—180 -

Creating New Models

Field Description (continued)

Frame Parameter or Names of up to four generation subprograms and the
Exit Name names of the corresponding code frame parameters or user
exit that is passed to each subprogram when it is executed.

Source Lines Total number of lines in the source buffer.
Total

Debugging a Model

After you create all the components of a model, you can use several Natural Con-
struct trace facilities to display information about the generation process. These
trace facilities can help you debug your model.

» To invoke the trace facilities:

1 Enter the specifications for the model you want to test.

2 Press PF5 (optns).
The Optional Parameters window is displayed:

CSGOPTS Natural Construct CSGOPTSO
Cct 26 Opti onal Paraneters 1 of 1
Status window

Post - generation nodi ficati ons

Specifications only

Docurent in Predict

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9-
help retrn quit

Optional Parameters Window

—-181 -

Natural Construct Administration and Modeling User’s Manual

The fields in the Optional Parameters window are:

Field

Description

Status window

Step

Text

Embedded
statements

Condition codes

Post-generation
modifications

If this field is marked, the Status window is displayed
during generation. Messages in this window indicate
which module is executing at each stage of the generation
process. The default for this field is determined by the
value specified for the Status field on the Maintain Models
panel (see Maintain Models Function, page 48).

If this field is marked, you can “step” through the stages of
the generation process by pressing Enter; the next message
is not displayed until you press Enter. To have the
generation process continue unaided, press PF2 (run).

If this field is marked, messages are displayed as text (for
example, “starting _” and “ending _”). If this field is not
marked, messages are displayed with arrows “---> _”
(starting) and “<--- _” (ending).

If this field is marked, embedded statements are written to
the source buffer as part of the generated module. These
statements indicate where the code originated and the
name of the code frame, generation subprogram, or sample
subprogram that produced it.

If this field is marked, the Condition Codes window
displays the values of the condition codes after the pre-
generation subprogram executes.

If this field is marked, the Post-Generation Modifications
window displays the values of the code frame substitution
parameters identified by an ampersand (&) during
generation. The window is displayed after the post-
generation subprogram stacks the substitution values in
the code frame.

-182 -

Creating New Models

Field Description (continued)
Specifications If this field is marked, only the current specifications and
only user exit code are saved. This function is helpful if

parameter edits do not allow you to complete the
generation process and you want to save the current
specifications and user exit code.

Document in If this field is marked, the saved generated module

Predict (program, data area, etc.) is documented within the Predict

data dictionary.

Type “G” in the Function field on the Generation main menu.

The following example shows the Status window without the Text field:

CSGVAI N Nat ur al Construct CSGVNMVD
B e + 1of 1
| CSQOPTS Nat ural Construct CSGOPTSO |
| Apr 15 Optional Paraneters 1 of 1]

e R et L T R +
CSGENPGF Nat ural Construct |
Apr 15 St at us W ndow 1of 1]

| Document in Predict _ |
| Enter-PF1---PF2---PF3-- - PF4-- - PF5- - - PF6- - - PF7- - - PF8- - - PF9- |
| help retrn |
|

L L T +
Function g___ Mdule CUMNR___ Panel _
Model ... CST- READ, Type........ Subpr ogr am
Command Library SYSCST
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
hel p quit opt ns | ang
Status Window

—-183 -

Natural Construct Administration and Modeling User’s Manual

Miscellaneous Tips and Precautions
The following tips and precautions apply when using the model subprograms:

¢ If you modify the redefinitions in a parameter data area (PDA), recatalog all sub-
programs that use the PDA. (You can extend redefinitions without recataloging.)

¢ In the post-generation subprogram, use the STACK TOP DATA FORMATTED
statement so Natural does not process input delimiter and assign characters.

¢ In the generation subprograms, use the NOTITLE or WRITE TITLE '' statements.
¢ To remove trailing blanks, use the PRINT (SRC) NOTITLE statement.

¢ Ifyouinclude PRINT statements, be sure to use a long line length (LL.S=150) so Nat-
ural does not break the line on a - or other special character.

¢ You can use an edit mask to write data without embedded spaces. For example:
PRI NT(SRC) NOTI TLE #FI ELD(EME' UPDATE- VI EW ' X(32))

¢ In user-supplied text strings that are used to build quoted literals, always change
single quotation marks to double quotation marks. For example:

I NCLUDE CU- - QUOT /* Assign #DOUBLE- QUOTE based on ASCl |/
/* EBCDI C

EXAM NE #PDAX- HEADI NG FOR "' "'

AND REPLACE W TH #DOUBLE- QUOTE

CU--QUOT is supplied with Natural Construct.

Note: For double-byte languages, such as Kanji, use the CSUEXAM subpro-
gram to perform the Examine and Replace operations.

¢ Although it is always better to use the n extension when using SYSERR numbers
to define field prompts, you can divide the contents of a delimited (indicated by the
/ character) SYSERR message with a single definition — if the field prompts are all
the same length and are defined in the LDA one after the other as follows:

#FI ELD-ONE A 10 INIT< *1234'>
#FI ELD-TWO A 10
#FI ELD- THREE A 10

Ifthe SYSERR message is “prompt1/prompt2/prompt3”, the result is #F IELD-ONE
= promptl, #FTELD-TWO = prompt2, and #FIELD-THREE = prompt3.

—184 —

Creating New Models

Implementing Your Model

After testing the code frames and model components (data areas, model subpro-
grams, maps, etc.), you are ready to make your model available to developers in the
Generation subsystem. To do this, use the SYSMAIN utility to copy all the model
components to the SYSLIBS library.

Statement Models

Statement models generate portions of code, such as Natural statements, Predict
views, and field processing code, which can be used in programs generated by your
programmers/analysts.

To create a statement model, specify a period (.) in the Type field on the Maintain
Models panel when you define the model. Typically, a statement model uses a pa-
rameter data area (PDA), a maintenance subprogram, and a pre-generation
subprogram (most do not use code frames). Statement models do not support user
exit code. After defining the model and its components, you use the SYSMAIN util-
ity to move the model components into the SYSLIBS library.

Statement models are designed to look like the statement syntax they are generat-
ing. For example, the If model looks like the IF statement:

I F
THEN

ELSE

END- 1 F

The screen text looks exactly like the Natural syntax. This also eliminates the need
for translation, thus improving performance and screen presentation.

—185 -

Natural Construct Administration and Modeling User’s Manual

To invoke a statement model, the developer issues the .G line command in the User
Exit, code frame, or Natural program editor. Using statement models can give your
programmers/analysts a variety of benefits, including:

¢ Reduce the need to refer to the Natural Reference Manual for the statement syntax.

¢ Reduce the keystrokes required to code Natural statements, since keywords are
automatically generated.

¢ Generate statements into their programs that have a consistent indentation.

¢ Allow their programs to perform tedious calculations (centering headings within a
window, for example).

e Allow their programs to access system files and automatically retrieve Predict
views, SYSERR message numbers, etc.

For information about invoking and using statement models, see the statement
model chapter in Natural Construct Generation User’s Manual.

Code Alignment of Generated Statement Models

By default, Natural Construct aligns the generated block of code so the first gener-
ated statement is indented by the same amount as the line on which the .G
command was entered. If you do not want your model to use this alignment, gen-
erate a ** line as the first line of your generated code.

—186 —

Creating New Models

Utility Subprograms and Helproutines

Natural Construct provides many subprograms and helproutines to simplify and
standardize the model creation process. These utilities, which are used by the sup-
plied models, can also be used by your models. The source for these utilities is not
supplied.

All subprograms use an external parameter data area (PDA). The source for this
PDA is in the SYSCST library. Use this PDA as the local data area (LDA) in the
invoking subprograms to determine required parameters. Parameters are docu-

mented within the PDA.

The supplied utilities are divided into categories, based on the type of information
they access. The names of these subprograms and helproutines begin with one of
the following prefixes:

Prefix Description

CPU Predict data retrieval subprograms.
CPH Predict data helproutines.

CNU Natural data retrieval subprograms.
CNH Natural data helproutines.

CSU Natural Construct utility subprograms.

Note: For more information about the supplied utility subprograms and hel-
proutines, see Natural Construct Generation Utility Subprograms
(CSU*), page 378.

- 187 —

Natural Construct Administration and Modeling User’s Manual

—188 —

NEW MODEL EXAMPLE

This chapter contains an example of creating a new model using the procedure de-
scribed in Building a New Model, page 121. The model, Menu, generates a
program that displays several choices to a user and allows the user to select one.
For an example of a generated menu program, see the NCMAIN program in the
demo library.

The following topics are covered:
¢ Procedure for Building the Example Model, page 190
¢ Defining the Scope of the Model, page 191
¢ Creating the Prototype, page 191
¢ Scrutinizing the Prototype, page 192
¢ Isolating the Parameters in the Prototype, page 192
¢ Creating the Code Frame and Defining the Model, page 193
¢ Creating the Model PDA, page 198
¢ Creating Translation LDAs and Maintenance Maps, page 200
¢ Creating the Model Subprograms, page 203
¢ Implementing the Model, page 214

—-189 -

Natural Construct Administration and Modeling User’s Manual

Procedure for Building the Example Model

Y

© 00 N o O b~ W N PP

The example model, Menu, generates a program that displays a menu from which
the user can select options.

To build the model example:

Define the scope of the model.

Create the prototype.

Scrutinize the prototype.

Isolate the parameters in the prototype.

Create the code frame and define the model.

Create the model PDA (parameter data area).

Create the translation LDAs (local data areas) and maintenance maps.
Create the model subprograms.

Implement your model.

The following sections describe the steps to create the Menu model.

—-190 -

New Model Example

Defining the Scope of the Model

A program generated by the Menu model must provide a list of options and descrip-
tions to the user for selection. The INPUT statement can be generated by Natural
Construct or supplied by the developer.

Creating the Prototype

After defining the scope of the model, create a prototype to handle the most com-
plex function and then refine the prototype to handle the simpler functions.

The following example shows the output from the NCMAIN prototype:

NCMVAI N **%xx ACME DEPARTMENT STORES ***** NCLAYMNL
Apr 02, - MAIN MENU - 04:11 PM
Code | Subsystem

tomme B T e L T T T +

| C | Custoner |

| T | Tabl e Mintenance |

| O | Oder |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

[2 | Help |

| . | Termnate |

Fomm e e e e e e m e e e mooo +

Code: __
Di rect Conmmand:
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrnquit flip mai n

Output from the NCMAIN Menu Program

-191 -

Natural Construct Administration and Modeling User’s Manual

Scrutinizing the Prototype

After creating the prototype, follow the steps outlined in Step 3: Scrutinize the
Prototype, page 124 to ensure that all of the assumptions are correct and the
scope of the model has been addressed.

Isolating the Parameters in the Prototype

Next, identify data that must be supplied by parameters. This data is described in
the following sections.

Parameters for the Program Header
The parameters supplied for the program header are:
¢ Name of the program that is generated.
e Application to which the generated program belongs.
¢ Date and time the program was generated.

¢ Title and description of the program.

Parameters for the Program Body
The parameters supplied for the program body are:
¢ Name of the global data area (GDA).
¢ Map used by the generated program.

¢ List of functions and their descriptions.

-192 -

New Model Example

Creating the Code Frame and Defining the Model

Creating the Code Frame

Once you have identified all data that must be supplied by parameters, create the
code frame (CMNA?) for the model.

Example of the Code Frame
For an example of the code frame for the Menu model, read the CMNA? code frame
(stored in the SYSCST library) into the Code Frame editor.

» To create the code frame:

1 Read the prototype into the Code Frame editor and define the substitution
parameters.
To identify a substitution parameter, locate the character strings that begin with
an ampersand (&) character.

The following table shows examples of substitution parameters in the code frame:

Line Number Code

4 GLOBAL USI NG &CGDA &W TH- BLOCK
29 01 #CODE- | N-LI ST(A2/1:12) INT<
30 &CODE- LI ST>

106 USI NG MAP ' &VAP- NAME'

-193 -

Natural Construct Administration and Modeling User’s Manual

2 Create the user exits.

To allow developers to specify additional parameters, local data, or Natural
statements, include the following user exits:

User Exit

Description

CHANGE-HISTORY

LOCAL-DATA

START-OF-PROGRAM

BEFORE-INPUT

AFTER-INPUT

BEFORE-PROCESSING-
MENU-CODES

SPECIAL-CODE-
PROCESSING

END-OF-PROGRAM

SET-PF-KEYS

Generates comment lines indicating the date and
ID of the person who created or modified the
program. The developer provides a description of
changes.

Defines additional local variables used in the
generated program.

Defines code that is executed once at the beginning
of the generated program — after all standard
initial values are assigned. For example, this user
exit code can initialize input values from globals.

Defines code that is executed immediately before
the INPUT statement is executed (before each
input panel is displayed). For example, this user
exit code can issue the SET CONTROL statements.

Defines code that is executed immediately after the
INPUT statement is executed (after each input
panel is displayed).

Defines code that is executed before the menu code
is processed.

Defines code that is executed when a menu code
does not FETCH a program.

Contains code that is executed once before the
program is terminated. For example, this user exit
code can assign a termination message.

Defines code that is executed before the PF-keys
are set and allows non-standard PF-keys to be
added to the program. (The additional PF-keys are
defined in the CDKEYLDA local data area.)

- 194 -

New Model Example

3 Create the code frame conditions.
To create conditional code, insert the condition name and condition level number
in the code frame. To view some examples of conditional code, read the Menu model
code frame, CMNA?, into the Code Frame editor and refer to the following
condition names:

* GDA-SPECIFIED
 DIRECT-COMMAND-PROCESSING
« MAP-USED

Defining the Model

At this point, you can define the model to Natural Construct using the Maintain
Models function on the Administration main menu.

Model subprograms are prefixed by CUMN, where CU identifies the subprogram
as a Natural Construct model subprogram and MN identifies the model (Menu).

Note: The CU prefix is used by the models supplied with Natural Construct.
When you create a new model or modify a supplied model, use a CX prefix.
For this example, we use a CU prefix.

The Menu model contains the following subprograms:

Subprogram Description

CUMNPDA Model parameter data area (PDA).

CUMNMAO Map associated with the first maintenance subprogram.
CUMNMA First maintenance subprogram.

CUMNMBO Map associated with the second maintenance subprogram.
CUMNMB Second maintenance subprogram.

CUMNC Clear subprogram.

CUMNR Read subprogram.

—-195 -

Natural Construct Administration and Modeling User’s Manual

Subprogram Description (continued)
CUMNPR Pre-generation subprogram.
CUMNPS Post-generation subprogram.
CUMNS Save subprogram.

CUMNGAAA Generation subprogram.

CUMNSAAA Sample subprogram.
CUMND Document subprogram.
CMNA? Code frame containing the header and main body for the

generated program.

—-196 -

New Model Example

» To add the Menu model to Natural Construct:
1 Invoke the Maintain Models function from the Administration main menu.

2 Specify the following parameters on the Maintain Models panel:

CSDFM NATURAL CONSTRUCT CSDFMD
Cct 08 Mai ntai n Mbdel s 1of 1
Action __ ABCDMNPR
Model ... MENU
Description *0200. 1
MENU Pr ogram

PDA name CUMNPDA Status window Y

Programming node S Comment start indicator .. **_

TYPE o P Program Conment end indicator __

Code frame(s) CWNA?__

Modi fy server specificatn CUVNVA CUWNVB

Modi fy client specificatn CUVMNVA CUWNVB

G ear specification CUWMNC___ Post -generation CUMNPS__
Read specification CUMNR___ Save specification CUWS___
Pre-generation CUWMNPR__ Docunent specification ... CUMND___
Command
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit frane mai n

Maintain Models Panel

Most of the components listed on the previous page are listed on this panel. The
components that are not listed on this panel are assigned through subprograms or
code frames. The CUMNMAO and CUMNMBO0 maps are invoked through the
CUMNMA and CUMNMB maintenance subprograms, respectively. The genera-
tion subprogram is assigned through the CMNA? code frame.

For more information about defining a model, see Defining the Scope of the
Model, page 191.

—-197 -

Natural Construct Administration and Modeling User’s Manual

Creating the Model PDA

Use the CST-PDA model in the Generation subsystem to create the parameter data
area (PDA) for the model (CUMNPDA).

Example of the Model PDA

For an example of the parameter data area for the Menu model, see the CUMNP-
DA parameter data area in the SYSCST library.

» To create the model PDA:

1 Specify the following parameters on the Generation main menu:
— Type “M” in the Function field.
— Type “CUMNPDA” in the Module field.
— Type “CST-PDA” in the Model field.

2 Press Enter.
The Standard Parameters panel is displayed.

3 Enter “Menu” in the Model field:

CUPDIVA CST- PDA Paraneter Data Area CUPDMVAL
Apr 03 St andard Paraneters 1of 1
Module CUMNPDA

Model Menu *

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
main help retrnquit

Standard Parameters Panel for the CST-PDA Model

You are returned to the Generation main menu.

4 Enter “G” in the Function field.
Natural Construct generates the PDA.

—-198 -

New Model Example

5 Enter “E” in the Function field.
The Natural data area editor is displayed. Each substitution parameter in the
model code frame corresponds to a user area variable in the model PDA that has
the same name and a #PDAX- or #PDA- prefix. Each condition variable in the
model code frame corresponds to a condition variable in the model PDA that has
the same name and a #PDAC- prefix.

6 Specify the type and length of each #PDAX variable.
7 Add any #PDA variables required by the model.

—-199 -

Natural Construct Administration and Modeling User’s Manual

Creating Translation LDAs and Maintenance Maps

Creating the Translation LDAs

To support dynamic translation of text and messages, you can create up to five
translation local data areas (LDAs) for each maintenance map; the module that in-
vokes the map must have a translation LDA. Translation LDAs contain the names
of the fields on the map that can be translated. To assign the INIT values for these
fields, use SYSERR references.

Example of the Translation LDAs

For an example of the translation LDAs for the Menu model, see the CU--MAL and
CUMNMBL LDAs in the SYSCST library.

The following example shows a translation LDA:

Local CUXXMAL Library SYSCST DBID 19 FNR 26
Command > +
I T L Nane F Leng I ndex/ I nit/EM Narme/ Comment
L e e
* * **SAG TRANSLATI ON LDA
* * * used by map CUXXMXO.
1 CUTRMAL
2 TEXT /* Corresponds to syserr nessage
3 #GEN- PROGRAM A 20 INIT< *2000.1,.'>
3 #TITLE A 20 INIT< *2001.1,.'>
3 #DESCS A 20 INIT< *2001.2,.'>
3 #DATA- AREA A 20 INIT< *2097.3,.'>
3 #LANGUAGE A 20 INIT< *1309.2,.'>
R 2 TEXT
3 TRANSLATI ON- TEXT
4 TEXT- ARRAY A 1 (1:100)
2 ADDI Tl ONAL- PARVB
3 #MESSAGE- LI BRARY A 8 I NI T<' CSTLDA >
3 #LDA- NAME A 8 | NI T<' CUXXMAL' >
3 #TEXT- REQUI RED L I Nl T<TRUE>
3 #LENGTH OVERRI DE | 4 |* Explicit len to translate

--- s17 L1

Example of a Translation LDA

- 200 -

New Model Example

» To create your translation LDAs:
1 Copy an existing translation LDA.
2 Define the fields for which you want dynamic translation.

All translation LDAs must have the format shown in the example above. For more
information, see Step 7: Create the Translation LDAs and Maintenance
Maps, page 163.

Creating the Maintenance Maps

The model uses one or more maintenance maps to accept parameters from a user.
To create the maintenance maps, use one of the following methods:

¢ Copy an existing maintenance map and modify it to suit your requirements.
¢ Create the map in the Natural Map editor.

¢ Create the map using the Natural Construct Map model.

Example of the Maintenance Maps

For an example of the maintenance maps for the Menu model, see the CU--MAQO
and CUMNMBO maps in the SYSCST library.

The CU--MAO maintenance map contains the following input fields:

Field Description

Module Name of the menu to be generated.

System Name of the system (usually the library name).

Global data area Name of the global data area (GDA) used by this menu

program. Developers can display a field-level help window
to select a value for this field.

With block Name of the GDA block used by this menu program (if
desired).

-201-

Natural Construct Administration and Modeling User’s Manual

Field Description (continued)

Title Title for the menu program. This title identifies the
program for the List Generated Modules function on the
Generation main menu.

Description Brief description of what the program does. This
description is written in the program banner.

First header First heading displayed on the generated menu.
Second header Second heading displayed on the generated menu.
Command Indicates whether the menu supports a Direct Command

line. This field is marked by default.

Message numbers Indicates whether the menu uses message numbers (if field
is marked) or message text (if field is blank).

Password Indicates whether the menu is password protected.

The CUMNMBO maintenance map contains the following input fields:

Field Description

Map layout Name of the map layout (form) used to create the menu
panel. Developers can display a field-level help window to
select a value for this field.

Code 1- or 2-character code used to invoke the functions listed on
the menu. Each code must have a corresponding function.

Functions Functions listed on the menu. Each function must have a
corresponding code. If desired, developers can change the
word, Functions, to another value.

Program Name Name of the program that is invoked when the

corresponding function is selected. Developers can display
a field-level help window to select a value for this field.

-202 -

New Model Example

Field Description (continued)
Optional Indicates whether additional input parameters are
Parameters required (user must enter a value) or optional.

Developers can specify a maximum of four additional
parameters (using PF5). On the menu, the parameters are
displayed as column headings to the right of the Function
heading and as input fields below the Code field.

If additional parameters are specified, Natural Construct
generates a legend (R for Required, O for Optional). The
legend is aligned under the first occurrence of a Required
or Optional indicator.

Creating the Model Subprograms

After you create the code frame, PDA, maintenance maps, and translation LDAs
for the Menu model, you are ready to create the model subprograms. The following
sections describe how to create each of the model subprograms.

Creating the Maintenance Subprograms

Use the CST-Modify model in the Generation subsystem to create the maintenance
subprograms (CUMNMA and CUMNMB). These subprograms invoke the
CUMNMAO and CUMNMBO0 maps, respectively.

Example of the Maintenance Subprograms

For an example of the maintenance subprograms for the Menu model, see the
CUMNMA and CUMNMB subprograms in the SYSCST library.

- 203 -

Natural Construct Administration and Modeling User’s Manual

» To create the CUMNMA maintenance subprogram:

1 Specify the following parameters on the Standard Parameters panel:

Ccud VA CST- Modi fy Subprogram CUG MAO
Cct 09 St andard Paraneters 1of 1
Module CUWMNMA__
Paraneter data area CUWNPDA_ *
Title ... Menu Mbdel Modify Subp__
Description This subprogramis used as nodify panel 1_ -
1 of 2
Map nanme CU-- MAO_ *
Translation LDAs ... CU--MNAL_ *

Cursor translation . X

First header
Second header *0311.1, +/ 54

Subpanel
W ndow support _
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit wi ndw pf key left wuserX nain

Standard Parameters Panel for the
CUMNMA Maintenance Subprogram

- 204 -

New Model Example

» To create the CUMNMB maintenance subprogram:

1 Specify the following parameters on the Standard Parameters panel:

Ccud VA CST- Modi fy Subprogram CUG MAO
Cct 09 St andard Paraneters 1of 1
Module CUWMNMB__
Paraneter data area CUWNPDA_ *
Title ... Menu Mbdel Modify Subp__
Description This subprogramis used as nodify panel 2_ -
2 of 2
Map nanme CUWNMBO_ *
Transl ation LDAs ... CUWMNMBL_ *

Cursor translation . X

First header
Second header *0310. 1, +/ 54

Subpanel
W ndow support _
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit wi ndw pf key left wuserX nain

Standard Parameters Panel for the
CUMNMB Maintenance Subprogram

- 205 -

Natural Construct Administration and Modeling User’s Manual

Creating the Pre-generation Subprogram

Use the CST-Pregen model in the Generation subsystem to create the pre-genera-
tion subprogram.

Example of the Pre-generation Subprogram

For an example of the pre-generation subprogram for the Menu model, see the
CUMNPR subprogram in the SYSCST library.

» To create the CUMNPR pre-generation subprogram:

1 Specify the following parameters on the Standard Parameters panel:

CUGPMVA CST- Pregen Subprogram CUG MAO
Cct 09 St andard Paraneters 1of 1
Module CUWMNPR__

Paraneter data area CUWNPDA_ *

Title ... Menu Mbdel Pregen Subp

Description Pre- generate subprogram

Set conditions and assign shared PDA vari abl es.

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
main help retrn quit user X mai n

Standard Parameters Panel for the
CUMNPR Pre-Generation Subprogram

- 206 —

New Model Example

Creating the Post-generation Subprogram

Use the CST-Postgen model in the Generation subsystem to create the post-gener-
ation subprogram.

Example of the Post-generation Subprogram

For an example of the post-generation subprogram for the Menu model, see the
CUMNPS subprogram in the SYSCST library.

» To create the CUMNPS post-generation subprogram:

1 Specify the following parameters on the Standard Parameters panel:

CUGOVA CST- Post gen Subpr ogram CUGOMAO
Cct 09 St andard Paraneters 1of 1
Module CUWMNPS

Model ... MENU *

Title ... Menu Mbdel Post-Gen Subp_

Description Post - generati on paraneters for the Menu nodel.___

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
main help retrn quit user X mai n

Standard Parameters Panel for the
CUMNPS Post-Generation Subprogram

- 207 -

Natural Construct Administration and Modeling User’s Manual

Creating the Clear Subprogram

Use the CST-Clear model in the Generation subsystem to create the clear subpro-
gram. The Menu model requires a clear subprogram because the #PDA-USER-
AREA field is redefined into non-alphanumeric variables (for example, #PDA-
USER-PARM-LENGTH and #PDA-CODE-LENGTH) and the Description field on
the first maintenance panel needs default text.

Example of the Clear Subprogram

For an example of the clear subprogram for the Menu model, see the CUMNC sub-
program in the SYSCST library.

» To create the CUMNC clear subprogram:

1 Specify the following parameters on the Standard Parameters panel:

CUGCVA CST-Cl ear Subprogram CUG MAO
Cct 09 St andard Paraneters 1of 1
Module CUMNC

Paraneter data area CUWNPDA_ *

Title ...t Menu Mbdel O ear Subp__

Description C ear specification paraneters and assign initial value

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
main help retrn quit user X mai n

Standard Parameters Panel for the
CUMNC Clear Subprogram

- 208 —

New Model Example

Creating the Save Subprogram

Use the CST-Save model in the Generation subsystem to create the save subpro-
gram. The save subprogram allows the model to read a previously-generated
program.

Example of the Save Subprogram

For an example of the save subprogram for the Menu model, see the CUMNS sub-
program in the SYSCST library.

» To create the CUMNS save subprogram:

1 Specify the following parameters on the Standard Parameters panel:

CUGANVA CST- SAVE Subpr ogr am CUG MAO
Cct 09 St andard Paraneters 1of 1
Module CUWNS___

Paranmeter data area CUWNPDA_ *

Title ...t Menu Mbdel Save Subp__

Description Save specification paraneters for the nenu nodel __

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
main help retrn quit user X mai n

Standard Parameters Panel for the
CUMNS Save Subprogram

- 209 -

Natural Construct Administration and Modeling User’s Manual

Creating the Read Subprogram

Use the CST-Read model in the Generation subsystem to create the read
subprogram.

Example of the Read Subprogram

For an example of the read subprogram for the Menu model, see the CUMNR sub-
program in the SYSCST library.

» To create the CUMNR read subprogram:

1 Specify the following parameters on the Standard Parameters panel:

CUGRVA CST- Read Subprogram CUG MAO
Cct 09 St andard Paraneters 1of 1
Module CUWMNR___

Paranmeter data area CUWNPDA_ *

Title ...t Menu Mbdel Read Subp__

Description Read paraneter specifications

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
main help retrn quit user X mai n

Standard Parameters Panel for the
CUMNR Read Subprogram

-210 -

New Model Example

Creating the Generation Subprogram

Use the CST-Frame model in the Generation subsystem to create the generation
subprogram.

Example of the Generation Subprogram

For an example of the generation subprogram for the Menu model, see the CUM-
NGGL subprogram in the SYSCST library.

» To create the CUMNGGL generation subprogram:

1 Specify the following parameters on the Standard Parameters panel:

CUGFMA CST- Frame Subprogram CUG MAO
Cct 09 St andard Paraneters 1of 1
Module CUWMNGGL_

Paraneter data area CUWNPDA_ *

Title ... Menu Mbdel Frane Subp_

Description Generation paraneter variables (if length and fornat

are specified)

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
main help retrn quit user X mai n

Standard Parameters Panel for the
CUMNGGL Generation Subprogram

-211-

Natural Construct Administration and Modeling User’s Manual

Creating the Document Subprogram

Use the CST-Document model in the Generation subsystem to create the document
subprogram.

Example of the Document Subprogram

For an example of the document subprogram for the Menu model, see the CUMND
subprogram in the SYSCST library.

» To create the CUMND document subprogram:

1 Specify the following parameters on the Standard Parameters panel:

CUGDIVA CST- Docunent Subpr ogr am CUGDMAO
Cct 09 St andard Paraneters 1 of 2
Module CUMND
Model ... Menu *
MBpS ... CU- - MAO_ CUVNMVBO_ *
*
Translation LDAs ... CU--NMAL_ CUWNMBL_ *
*
Title ...t Menu Mbdel Docunent Subp_
Description Wites Predict docunentation for the Menu nodel __

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
right help retrn quit right main

Standard Parameters Panel for the
CUMND Document Subprogram

2 Press PF11 (right).
The Additional Parameters panel is displayed.

-212 -

New Model Example

3 Specify the following parameters:

CUGDVB CST- Docunent Subpr ogram CUGDVBO
Cct 09 Addi tional Paraneters 2 of 2
Help Text Type (0]
Maj or Model
M nor Menu
Descri ption
1
2
3
4
5
6
7
8
9
10
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
main help retrn quit left userX nain

Specific Parameters Panel for the
CUMND Document Subprogram

Test the Model Subprograms

Natural Construct supplies a utility to help you test the model subprograms.

» To invoke the model subprogram test utility:
1 Logonto the SYSCST library.

2 Enter CSUTEST at the Next prompt (Direct Command box for Unix).
The Single Module Test Program panel is displayed. For information about this
panel, see Testing the Model Subprograms, page 178.

-213 -

Natural Construct Administration and Modeling User’s Manual

Implementing the Model

After creating and testing the code frames and model components (data areas,
model subprograms, maps, etc.), copy all components to the SYSLIBS library.

» To implement the model:

=

Invoke the SYSMAIN utility from the Next prompt.
Copy all the model components to the SYSLIBS library.

Your new model is now ready for use in the Generation subsystem.

—214-

CST-PDA MODEL

All models require three external parameter data areas (PDAs): the model PDA,
CU—PDA, and CSASTD. CU—PDA and CSASTD are supplied with Natural Con-
struct. The model PDA is user-created and contains variables and conditions
specific to the model. This chapter describes how to use the CST-PDA model to gen-
erate the model PDA.

The following topics are covered:

¢ Introduction, page 216
¢« Parameters for the CST-PDA Model, page 217

-215-

Natural Construct Administration and Modeling User’s Manual

Introduction

All models require the following external parameter data areas (PDAs):

PDA Description

Model PDA User-defined; contains variables and conditions specific to a model.

Note: Ifyou are creating a model that generates modules to run on a
Natural Construct client, you must also generate a stream
subprogram to convert the contents of the model PDA into a format
that can be transmitted between the client and the server. For
information, see CST-Stream Model, page 287.

CU—PDA Supplied with Natural Construct.

CSASTD Supplied with Natural Construct.

Two of the data areas are supplied; you create the model PDA for each model. The
model PDA passes information between the Natural Construct nucleus and the
model and generation subprograms.

Before generating your model PDA, create the code frames and define your model
to Natural Construct. Natural Construct uses information in the model code
frames to generate the model PDA, such as:

e substitution parameters
¢ condition codes

For information about isolating the parameters for your model PDA, see Step 4:
Isolate the Parameters in the Prototype, page 125.

For information about creating code frames and defining models, see Step 5: Cre-
ate Code Frame(s) and Define the Model, page 126.

For more information about creating the model PDA, see Step 6: Create the Mod-
el PDA page 142.

For an example of a generated model PDA, see the CUMNPDA parameter data
area in the SYSCST library.

-216 -

CST-PDA Model

Parameters for the CST-PDA Model

After you create the code frames and define your model, use the CST-PDA model
to generate the model PDA. The CST-PDA model has one specification panel: Stan-
dard Parameters. This panel is described in the following section.

Standard Parameters Panel

CUPDVA CST- PDA Paraneter Data Area CUPDMAL
Feb 06 St andard Paraneters 1of 1
Modul e name CXMNPDA _

Model nane *

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit mai n

Standard Parameters Panel for the CST-PDA Model

-217 -

Natural Construct Administration and Modeling User’s Manual

The fields on this panel are:

Field Description

Module name Name of the model PDA (the name specified on the
Generation main menu). The name must be alphanumeric
and no more than 8 characters in length. Use the following
naming convention:

CXxxPDA

where xx uniquely identifies your model.

Model name Name of the model that uses the model PDA. (The specified
model and its corresponding code frames must be defined
on the Maintain Models panel.)

After you specify the required parameters and generate the model PDA, edit the
generated code and assign the correct format and length for each field. All substi-
tution parameters are generated with a default format and length of A10. You can
also add any new parameters your model PDA may require.

Layout of the Generated Model PDA

The CST-PDA model builds the model PDA by scanning the model code frames for
substitution parameters and condition codes. Substitution parameters are charac-
ter strings that begin with an ampersand (&) and end with a special character such
as a period (.), parentheses, or an asterisk (*), but not a hyphen (-).

For each substitution parameter, the model generates a field (prefixed by #PDAX)

within the redefinition of the #PDA-USER-AREA field in the model PDA. The mod-
el assigns the default format and length for alphanumeric fields (A10), which you

can change as required. (For more information, see General Information in Nat-
ural 2 Reference Manual.)

For each condition code, the model generates a logical field (prefixed by #PDAC)
within the redefinition of the ##DA-CONDITION-CODES field in the model PDA.

-218 -

CST-CLEAR MODEL

This chapter describes how to use the CST-Clear model to generate the clear sub-
program for your model. The clear subprogram resets variables in the model PDA.

The following topics are covered:
¢ Introduction, page 220
¢« Parameters for the CST-Clear Model, page 221
¢ User Exits for the CST-Clear Model, page 223

-219 -

Natural Construct Administration and Modeling User’s Manual

Introduction

After you define the model PDA, use the CST-Clear model to generate the clear
subprogram for your model. The clear subprogram resets the #PDA-USER-AREA
variables in the model PDA. If the #PDA-USER-AREA alphanumeric field is rede-
fined into a non-alphanumeric field that does not contain data according to the
specified format, an abnormal termination may occur when it is used. To avoid this,
the clear subprogram can reset redefined non-alphanumeric fields. Only non-al-
phanumeric variables are reset. The clear subprogram can also assign initial
default values for user parameters.

The CST-Clear model assumes that your model PDA has the RESET-STRUC-
TURE group level name. For example:

*

* User defined paraneter area
2 #PDA- USER- AREA A 100 (1:40)

R 2 #PDA- USER- AREA /* REDEF. BEGQ N : #PDA- USER- AREA
3 RESET- STRUCTURE

*

Note: A model PDA generated by the CST-PDA model contains the RESET-
STRUCTURE field.

If you do not specify a clear subprogram, the Clear Edit Buffer function on the Gen-
eration main menu sets the #PDA-USER-AREA field to blanks. The edit buffer is
always cleared, regardless of whether the model uses a clear subprogram.

The nucleus invokes the clear subprogram in the following situations:
¢ When a user invokes the Clear Edit Buffer function on the Generation main menu.
¢ When a user changes the model name and the new model uses a different PDA.

¢ Immediately before the Read Specifications function is invoked on the Generation
main menu.

For an example of a generated clear subprogram, see the CUMNC subprogram in
the SYSCST library.

-220 -

CST-Clear Model

Parameters for the CST-Clear Model

Use the CST-Clear model to generate the clear subprogram. The CST-Clear model
has one specification panel, Standard Parameters, and one user exit panel. These
panels are described in the following sections.

Standard Parameters Panel

CUGCVA CST-Cl ear Subprogram CUG MAO
Aug 09 St andard Paraneters 1of 1
Modul e name CXMNC___

Paraneter data area CXWNPDA_ *

Title ...t dear ...__

Description C ear specification Paraneters ...

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
main help retrn quit user X mai n

Standard Parameters Panel for the CST-Clear Model

-221 -

Natural Construct Administration and Modeling User’s Manual

The fields on the Standard Parameters panel are:

Field

Description

Module name

Parameter
data area

Title

Description

Name specified on the Generation main menu. The name of the
clear subprogram must be alphanumeric and no more than 8
characters in length. Use the following naming convention:

CXxxC

where xx uniquely identifies your model.

Name of the parameter data area (PDA) for your model.
Natural Construct determines the name of the PDA by the
Module name was specified on the Generation main menu.

For example, if you entered CXMNC as the name of the clear
subprogram, Natural Construct assumes the name of the PDA
is CXMNPDA. Use the following naming convention:

CXxxPDA

where xx uniquely identifies your model.

Title for the clear subprogram. The title identifies the
generated clear subprogram for the List Generated Modules
function on the Generation main menu and is used internally
for program documentation.

Brief description of the clear subprogram. The description is
inserted in the banner at the beginning of the clear
subprogram and is used internally for program documentation.

—-222 -

CST-Clear Model

User Exits for the CST-Clear Model

CSGSAMPL CST-d ear Subprogram CSGSM)
Aug 09 User Exits 1of 1
User Exits Exi sts Sanpl e Required Conditional

_ CHANGE- HI STORY Subpr ogram

_ PARAMETER- DATA

_ LOCAL- DATA

_ PROVI DE- DEFAULT- VALUES Subprogram

_ BEFORE- CHECK- ERROR Exanpl e

_ADDI TI ONAL- I NI TI ALI ZATI ONS Exanpl e

_ END- OF- PROGRAM

User Exits Panel for the CST-Clear Model

For more information about user exits, see Supplied User Exits, page 305. For
information about the User Exit editor, see User Exit Editor, page 120, in Natu-
ral Construct Generation User’s Manual.

- 223 -

Natural Construct Administration and Modeling User’s Manual

— 224 —

CST-READ MODEL

This chapter describes the CST-Read model used to generate the read subprogram
for your model. The read subprogram reads the specifications for the model.

The following topics are covered:
¢ Introduction, page 226
e Parameters for the CST-Read Model, page 227
¢ User Exits for the CST-Read Model, page 229

- 225 -

Natural Construct Administration and Modeling User’s Manual

Introduction

After you define the model PDA and clear subprogram, generate a read subpro-
gram to read the specifications from a previously-generated module. The generated
subprogram has one INPUT statement for each #PDAX variable in the model PDA.

A read subprogram generated by the CST-Read model contains a series of INPUT
statements that accept the data previously placed in the Natural stack. The read

subprogram is invoked when the developer invokes the Read Specifications func-

tion on the Generation main menu.

Before the read subprogram is invoked, all **SAG parameter values are placed on
the Natural stack. The read subprogram repeats a series of INPUT statements to
accept the stacked parameters and assign them to the correct PDA variables. This
subprogram must correspond to the save subprogram that writes the **SAG pa-
rameter lines. The read subprogram can also read common parameters from a
different model.

Note: Natural Construct invokes the clear subprogram before invoking the read
subprogram. It is not necessary to save null parameter values.

For an example of a generated read subprogram, see the CUMNR subprogram in
the SYSCST library.

- 226 -

CST-Read Model

Parameters for the CST-Read Model

Use the CST-Read model in the Generation subsystem to generate the read sub-
program. The CST-Read model has one specification panel, Standard Parameters,
and one user exit panel. These panels are described in the following sections.

Standard Parameters Panel

CUGRVA CST- Read Subprogram CUG MAL
Feb 13 St andard Paraneters 1of 1
Modul e name CXWNR___

Paraneter data area CXWNPDA_ *

Title

Description Read paraneter specification.

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit user X main

Standard Parameters Panel for the CST-Read Model

- 227 -

Natural Construct Administration and Modeling User’s Manual

The fields on the Standard Parameters panel are:

Field

Description

Module name

Parameter
data area

Title

Description

Name specified on the Generation main menu. This name must
be alphanumeric and no more than 8 characters in length. Use
the following naming convention:

CXxxR

where xx uniquely identifies your model.

Name of the parameter data area (PDA) for your model.
Natural Construct determines the name of the PDA by the
Module name was specified on the Generation main menu.

For example, if you entered CXMNR as the read subprogram
name, Natural Construct assumes the PDA name is
CXMNPDA. Use the following naming convention:

CXxxPDA

where xx uniquely identifies your model.

Title for the read subprogram. The title identifies the
generated read subprogram for the List Generated Modules
function on the Generation main menu and is used internally
for program documentation.

Brief description of the read subprogram. The description is
inserted in the banner at the beginning of the read subprogram
and is used internally for program documentation.

- 228 -

CST-Read Model

User Exits for the CST-Read Model

CSGSAMPL CST- Read Subprogr am CSGSM)
Cct 09 User Exits 1of 1
User Exits Exi sts Sanpl e Requi red Conditional

_ CHANGE- HI STORY Subpr ogram

_ PARAMETER- DATA

_ LOCAL- DATA Exanpl e

_ I NPUT- ADDI Tl ONAL- PARAVETERS Subpr ogr am

_ BEFORE- CHECK- ERROR Exanpl e

_ ADDI TI ONAL- | NI TI ALI ZATI ONS

_ END OF- PROGRAM

CST-Read User Exits Panel

For more information about user exits, see Supplied User Exits, page 305. For
information about the User Exit editor, see User Exit Editor, page 120, in Natu-
ral Construct Generation User’s Manual.

- 229 -

Natural Construct Administration and Modeling User’s Manual

-230-

CST-SAVE MODEL

This chapter describes the CST-Save model, which you use to generate the save
subprogram for your model. The save subprogram writes the specification param-
eters to the source buffer.

The following topics are covered:
¢ Introduction, page 232
¢« Parameters for the CST-Save Model, page 233
¢ User Exits for the CST-Save Model, page 235

-231-

Natural Construct Administration and Modeling User’s Manual

Introduction

To read an existing program, your model must have both a save and a read subpro-
gram. The save subprogram must contain a separate WRITE statement for each
specification parameter (#PDAX variable). Use the equal sign (=) notation to in-
clude the variable contents with the name of the variables. For example:

WRI TE(SRC) NOTI TLE ' =' #PDAX-vari abl e- nane

Note: Use a separate WRITE statement for each component of an array.

For an example of a save subprogram, see the CUMNS subprogram in the SYSCST
library.

-232 -

CST-Save Model

Parameters for the CST-Save Model

Use the CST-Save model in the Generation subsystem to generate the save subpro-
gram. The CST-Save model has one specification panel, Standard Parameters, and
one user exit panel. These panels are described in the following sections.

Standard Parameters Panel

CUGAVA CST- Save Subprogram QUG VAL
Feb 13 St andard Paraneters 1of 1
Modul e name CXWNS___

Paraneter data area CXWNPDA_ *

Title ... save ...__

Description Save paraneter specification ...

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit user X main

Standard Parameters Panel for the CST-Save Model

- 233 -

Natural Construct Administration and Modeling User’s Manual

The fields on the Standard Parameters panel are:

Field

Description

Module name

Parameter
data area

Title

Description

Name specified on the Generation main menu. The name of the
save subprogram must be alphanumeric and no more than 8
characters in length. Use the following naming convention:

CXxxS

where xx uniquely identifies your model.

Name of the parameter data area (PDA) for your model.
Natural Construct determines the name of the PDA from the
Module name specified on the Generation main menu.

For example, if you entered CXMNS as the save subprogram
name, Natural Construct assumes the PDA name is
CXMNPDA. Use the following naming convention:

CXxxPDA

where xx uniquely identifies your model.

Title for the save subprogram. The title identifies the
generated save subprogram for the List Generated Modules
function on the Generation main menu and is used internally
for program documentation.

Brief description of the save subprogram. The description is
inserted in the banner at the beginning of the save subprogram
and is used internally for program documentation.

—234-

CST-Save Model

User Exits for the CST-Save Model

CSGSAMPL CST- Save Subprogram CSGSM)
Cct 09 User Exits 1of 1
User Exits Exi sts Sanpl e Requi red Conditional

_ CHANGE- HI STORY Subpr ogram

_ PARAMETER- DATA

_ LOCAL- DATA Exanpl e

_ START- OF- PROGRAM

X SAVE- PARAMETERS Subprogram X

_ BEFORE- CHECK- ERROR Exanpl e

_ ADDI TI ONAL- | NI TI ALI ZATI ONS Exanpl e

_ END OF- PROGRAM

CST-Save User Exits Panel

For more information about user exits, see Supplied User Exits, page 305. For
information about the User Exit editor, see User Exit Editor, page 120, in Natu-
ral Construct Generation User’s Manual.

—-235-

Natural Construct Administration and Modeling User’s Manual

- 236 -

CST-MODIFY AND CST-MODIFY-332 MODELS

This chapter describes the CST-Modify and CST-Modify-332 models used to gener-
ate the modify subprograms for your model. The CST-Modify model generates
specification panels that support dynamic translation. The CST-Modify-332 model
is provided for users who want to continue using modify subprograms that were
generated using previous versions of Natural Construct.

The following topics are covered:
¢ Introduction, page 238
e CST-Modify Model, page 239
¢« Parameters for the CST-Modify Model, page 240
¢ User Exits for the CST-Modify Model, page 249
e CST-Modify-332 Model, page 250
¢« Parameters for the CST-Modify-332 Model, page 253
¢ User Exits for the CST-Modify-332 Model, page 256

- 237 -

Natural Construct Administration and Modeling User’s Manual

Introduction

After you define the model PDA, create the clear, read, and save subprograms, and
create the maintenance maps and translation LDAs, you can create one or more
modify subprograms to collect user-supplied specification parameters (#PDAX
variables) and perform validation checks. A modify subprogram can also set the
condition codes and #PDA variables.

Modify subprograms are executed in the same order as they appear on the Main-
tain Models panel. Usually, there is one modify subprogram for every left/right
(horizontal) maintenance panel. Data edits should only be applied if the developer
presses Enter or PF11 (right). Either the modify subprogram or the maintenance
map can validate the parameters.

You should only trap PF-keys that perform specialized functions related to the pan-
el. If you want the PF-key settings to be dependent on the default settings specified
on the Control record, the subprogram should not contain hardcoded PF-keys
(check the PF-key values using the variables specified in CU—PDA).

The CST-Modify and CST-Modify-332 models are described in the following sec-
tions. We recommend you use the CST-Modify model to create new model modify
subprograms.

Note: A modify subprogram can test the value of CU—PDA.#PDA-PHASE to
identify the phase during which it was invoked (G for generation, M for
modification, L for translation, U for sample user exits).

- 238 -

CST-Modify and CST-Modify-332 Model

CST-Modify Model

The CST-Modify model generates model modify subprograms that support dynam-
ic translation and multiple languages. To implement dynamic translation, you
must also create a maintenance map and one or more translation local data areas
(LDAs) for each modify subprogram. For more information, see Step 7: Create the
Translation LDAs and Maintenance Maps, page 163.

The CST-Modify model generates either a main modify subprogram panel (defined
on the Maintain Models panel) or a modify subprogram subpanel (invoked from the
main modify subprogram panel using a PF-key). To reduce the amount of informa-
tion on a panel, we recommend you group similar parameters, such as windowing
information, and move that information to a subpanel.

If desired, a subroutine can display the subpanel. Subroutines are typically used to
control processes that do not require a panel or subpanel to be displayed. For ex-
ample, a subroutine can enable backward or forward scrolling or test a function
that does not require mandatory edits for generation. Both subprograms and sub-
routines are invoked by PF-keys from the main modify subprogram panel.

All modify subprograms require a VALIDATE-INPUT subroutine to process man-
datory edits. At generation time, the edits for the modify subprogram subpanel are
processed first and then the edits for the main modify subprogram panel. There-
fore, any subroutine edits should also be included in the VALIDATE-INPUT
subroutine. To avoid confusion about the order of execution of the panel and sub-
panel subroutines, place edit checks in programs rather than in subroutines.

The CST-Modify model also allows you to override the headers and PF-keys defined
on the Subprogram record.

For an example of a modify subprogram panel generated by the CST-Modify model,
see the CUMNMB subprogram in the SYSCST library. For an example of a modify
subprogram subpanel generated by the CST-Modify model, see the CUMNMBA
subprogram in SYSCST.

For more information, see Using SYSERR References, page 496.

—-239 -

Natural Construct Administration and Modeling User’s Manual

Parameters for the CST-Modify Model

Use the CST-Modify model to generate a modify subprogram that supports dynam-
ic translation. This model has one specification panel, Standard Parameters, and
one user exit panel. These panels are described in the following sections.

Standard Parameters Panel

Ccud VA CST- Modi fy Subprogram CUG MAO
Jun 25 St andard Paraneters 1of 1
Modul e name CXMNVA__

Paraneter data area CXWNPDA_ *

Title mwdify oo

Description Modi fy server specificatn Paraneters ...__ -
Map nanme o

Transl ation LDAs ... *

Cursor translation . _

First header
Second header

Subpanel

W ndow Support _

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit wi ndw pf key left userX nain

Standard Parameters Panel for the CST-Modify Model

—240 -

CST-Modify and CST-Modify-332 Model

The fields on the Standard Parameters panel are:

Field

Description

Module name

Parameter data
area

Title

Description

Name specified on the Generation main menu. The name
of the modify subprogram must be alphanumeric and no
more than eight characters in length. Use the following
naming convention:

Panel: CXxxMy Subpanel: CXxxMyz

where xx uniquely identifies your model and y is a letter
from A to J that identifies the maintenance panel (A for the
first maintenance panel, B for the second, etc.), and z is a
letter from A to J that identifies the subpanel.

Name of the parameter data area (PDA) for your model.
Natural Construct determines the PDA name based on the
Module name specified on the Generation main menu.

For example, if you entered CXMNMA as the modify
subprogram name, Natural Construct assumes the PDA
name is CXMNPDA. Use the following naming convention:

CXxxPDA

where xx uniquely identifies your model.

Title for the modify subprogram. The title identifies the
generated modify subprogram for the List Generated
Modules function on the Generation main menu and is
used internally for program documentation.

Brief description of the modify subprogram. The
description is inserted in the banner at the beginning of the
modify subprogram and is used internally for program
documentation.

—-241 -

Natural Construct Administration and Modeling User’s Manual

Field Description (continued)

Map name Name of the map for the modify subprogram. Natural
Construct determines the name of the map based on the
Module name specified on the Generation main menu.

For example, if you entered “CXMNMA” as the
subprogram name, Natural Construct assumes the map
name is CXMNMADO.

The specified map must exist in the current library and the
map name should correspond to the modify subprogram
name, with the addition of a zero. The zero indicates that
the map has no hard-coded text and is used for dynamic
translation. For example:

Program Map

CXMNMA CXMNMAO
CXMNMB CXMNMBO

Translation LDAs Names of the translation local data areas (LDAs) for the
modify subprogram. You can specify the names of up to five
translation LDAs. The specified translation LDAs must
exist. The LDA name should correspond to the modify
subprogram name, with the addition of “L.”. For example:

Program Translation LDA

CXMNMA CXMNMAL
CXMNMB CXMNMBL

Cursor If this field is marked, the generated subprogram panel
translation supports cursor translation (users can modify the text on
this panel in translation mode).

—242 -

CST-Modify and CST-Modify-332 Model

Field

Description (continued)

First header

Note:

Second header

Note:

First heading displayed on the generated subprogram
panel or the SYSERR number(s) that supplies the heading.

By default, this header is automatically populated with the
description of the model record. To override this default,
specify the new header in this field.

To specify the positioning of the heading, use special
syntax after the text or SYSERR numbers. By default, the
header is displayed at the left margin. To center First
Heading across 50 bytes, type:

First Heading,+/50

The text before “,+/” indicates the heading displayed. The
number after “,+/ “indicates the number of bytes within
which the heading is centered.

For information about SYSERR message numbers, see
Using SYSERR References, page 496 or the SYSERR
Utility chapter in the Natural Utilities Manual.

Data substitution within SYSERR references is not
supported in this context.

Second heading displayed on the generated panel or the
SYSERR number(s) that supplies the heading.

By default, this header is populated with the description on
the Subprogram record, if it exists. Unlike the Model
record, which populates the first header field, the
Subprogram record only exists if you create it. To supply a
second header (if no Subprogram record exists) or to
override the default, specify a new header in this field.

We recommend you use this field to define the second
heading, instead of using the description specified on the
Maintain Subprograms panel. The Natural Construct
nucleus does not reference the Subprogram record for
supplied models, so the description used to populate the
second header will not exist unless you create it.

—243 -

Natural Construct Administration and Modeling User’s Manual

Field Description (continued)

To specify the heading position, use special syntax after the
text or SYSERR number. By default, the header is
displayed at the left margin. To center Second Heading
across 50 bytes for example, type:

Second Heading,+/50

The text before the “,+/” indicates the heading displayed.
The number after the “,+/” indicates the number of bytes in
which the heading is centered.

For information about using SYSERR message numbers,
see Using SYSERR References, page 496 or the
SYSERR Utility chapter in the Natural Utilities Manual.

Note: Data substitution within SYSERR references is not
supported in this context.

Subpanel If this field is marked, the generated subprogram is a
subpanel (invoked from a main panel, such as a help
selection window).

By default, the Natural Construct nucleus controls the
help, retrn, quit, left, right, and main PF-keys (defined on
the Natural Construct Control record) for a main panel,
and the help, retrn, quit, and main PF-keys for a subpanel.
To define the processing for additional keys (the left and
right keys, for example) on a subpanel, press PF6 on the
Standard Parameters panel. For more information, see
PF6 (pfkey), page 247.

Window support If this field is marked, the generated subprogram is
displayed in a window.

By default, the PF-keys and messages are displayed within
the generated window, and a frame (border) is displayed
around the generated window. (To change the default
window settings, press PF5 on the Standard Parameters
panel. For more information, see PF5 (windw), page 245.

—244 -

CST-Modify and CST-Modify-332 Model

PF5 (windw)

To change the default window settings, press PF5 (windw). The Window Parame-

ters window is displayed:

Control screen _

Title

CUG DVWM Nat ural Construct CUG DWVD
Jun 25 W ndow Par anet er s 1 of 1
Size Height -

Wdth o
Position Line -

Colum -
Frame OFF _

help retrn quit

Ent er - PF1- - - PF2-- - PF3- - - PF4- - -

PF5-- -

PF8- - - PFO- - - PF10- - PF11- - PF

m

PF6--- PF7- - -

Window Parameters Window

The fields in this window are:

Description

Field

Size Height
Width

Position Line

Number of lines the window spans. This value
is included in the DEFINE WINDOW
command generated by the subprogram.

Number of columns the window spans. This
value is included in the DEFINE WINDOW
command generated by the subprogram. If the
defined width is too small, Natural will adjust
the size of the window.

Number of lines between the top of the panel
and the top of the window begins. This value is
included in the DEFINE WINDOW command
generated by the subprogram.

— 245 -

Natural Construct Administration and Modeling User’s Manual

Field

Description (continued)

Frame OFF

Control screen

Title

Column

Number of columns between the left edge of the
panel and the left edge of the window. This
value is included in the DEFINE WINDOW
command generated by the subprogram. The
specified line and column form the top left
corner of the window.

If this field is marked, the window does not use
a frame (border).

If this field is marked, the PF-keys and
messages are displayed within the generated
window (CONTROL SCREEN). If this field is
blank, the PF-keys and messages are displayed
outside the window (CONTROL WINDOW).

Title for the window; may be either text or the
name of the variable that supplies the title.
The title is automatically centered in the
window frame. By default, the window does not
have a title.

— 246 -

CST-Modify and CST-Modify-332 Model

PF6 (pfkey)

To define the processing for non-standard program function keys (PF-keys), press
PF6 (pfkey) on the Standard Parameters panel. The PF-Key Parameters window
is displayed:

CUG VAA Nat ur al Construct CUG MAAO
Jun 25 PF-key Paraneters 1of 1
Subpr ogram Subrout i ne NAMVED
PF5
PF6
PF9
PF4 t est
PF7 bkwr d
PF8 frwd
PF10 left
PF11 right
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

PF-Key Parameters Window

By default, the Natural Construct nucleus controls the help, retrn, quit, left, right,
and main PF-keys for a main panel (defined on the Natural Construct Control
record), and the help, retrn, quit, and main PF-keys for a subpanel. In this window,
you can override the nucleus-controlled PF-keys displayed on a subpanel by:

¢ Defining the processing and name for a non-standard PF-key

¢ Changing the processing and/or name for a non-standard PF-key

—247 -

Natural Construct Administration and Modeling User’s Manual

The fields in this window are:

Field Description

Subprogram Name of the subprogram that is executed when the
corresponding PF-key is pressed. This subprogram is
invoked during generation to process the VALIDATE-
INPUT subroutine.

Subroutine Name of the subroutine that is executed when the
corresponding PF-key is pressed.

NAMED Name of the PF-key (text or a valid SYSERR message
number). If this field is blank, the default PF-key names
are used. For more information, see Using SYSERR
References, page 496.

Note: The left and right PF-keys are available only if the maintenance subpro-
gram is a subpanel.

— 248 —

CST-Modify and CST-Modify-332 Model

User Exits for the CST-Modify Model

CSGSAMPL CST- Modi fy Subprogram CSGSMD
Cct 09 User Exits 1of 1
User Exits Exi sts Sanpl e Requi red Conditional

_ CHANGE- HI STORY Subpr ogram

_ PARAMETER- DATA

_ LOCAL- DATA

_ START- OF- PROGRAM

_ BEFORE- CHECK- ERROR Exanpl e

_ BEFORE- STANDARD- KEY- CHECK Exanpl e

_ ADDI Tl ONAL- TRANSLATI ONS

_ ADDI TI ONAL- | NI TI ALI ZATI ONS Exanpl e

_ BEFORE- | NPUT

_ I NPUT- SCREEN Exanpl e X

_ AFTER-I NPUT

_ BEFORE- | NVOKE- SUBPANELS X

_ AFTER- | NVOKE- SUBPANELS X

_ BEFORE- RElI NPUT- MESSAGE

_VALI DATE- DATA Subpr ogram

_ M SCELLANEQOUS- SUBROUTI NES Exanpl e

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
frwd help retrn quit bkwrd frwd

CST-Modify User Exits Panel 1

CSGSAMPL CST- Modi fy Subprogram CSGSMD
Cct 09 User Exits 1of 1
User Exits Exi sts Sanpl e Requi red Conditional
END- OF- PROGRAM Exanpl e

CST-Modify User Exits Panel 2

For more information about user exits, see Supplied User Exits, page 305. For
information about the User Exit editor, see User Exit Editor, page 120, in Natu-
ral Construct Generation User’s Manual.

— 249 —

Natural Construct Administration and Modeling User’s Manual

CST-Modify-332 Model

Use the CST-Modify-332 model to generate a standard modify subprogram that
does not support dynamic translation. This model is provided for existing users
who want to continue using modify subprograms that were generated under previ-
ous versions of Natural Construct. We recommend you use the CST-Modify model
to create new models. For more information, see CST-Modify Model, page 239.

- 250 -

CST-Modify and CST-Modify-332 Model

Example of a Model Modify Subprogram

>

> + Subprogram : CXMNMA Lib: SAG

Top...+.... 1. ...+ ... 2.+ ... 3. 4 4+ 5 L Bl
0010 **SAG GENERATOR: CONSTRUCT- MODEL- MAI NTENANCE nodel Version: 3
0020 **SAG TI TLE: Mbdify subprogram
0030 **SAG SYSTEM NATURAL- CONSTRUCT
0040 **SAG DATA- AREA: CXMNPDA
0050 **SAG MAP: CXWMNVAl
0060 **SAG DESCS(1): This nodify subprogram accepts all the
0070 **SAG DESCS(2): standard paraneters for the MENU nodel .
0080 IR R R E R E SR SR EEEEE SRR EEEEEEEEREEEEREEEEREEEEEREERESEEREEEEESEEEEEEEEE RS
0090 * Program : CXMNMVA
0100 * System : NATURAL- CONSTRUCT
0110 * Title : Modify subprogram
0120 * Generated: Nov 09,01 at 01:35 PM
0130 * Function : This nodify subprogram accepts all the
0140 * standard paranmeters for the MENU nodel .

0150 *

0160 * History

0170 IR R R E R E SR SRS EEEESE SRR EEE SRR EEEREEEEEEEEEREERESEEREEEEEEEEEEESEEESE]
0180 DEFI NE DATA

0190 PARAMETER USI NG CXMNPDA

0200 PARAMETER USI NG CU—PDA

0210 PARAMETER USI NG CSASTD

0220 LOCAL

0230 01 #PF- KEY(A4)

0240 01 #PROGRAM A8)

0250 END- DEFI NE

0260 FORVAT PS=24 SG=OFF ZP=OFF KD=ON

0270 ASSI GN #PROGRAM = * PROGRAM

0280 *

0290 PROG.

0300 REPEAT/* To all ow escape from

0310 | F CSASTD. RETURN- CCDE NE ' ' /* subroutine

0320 I NPUT W TH TEXT CSASTD. MSG ALARM USI NG MAP ' CXMNIVAL'
0330 ELSE

0340 I NPUT W TH TEXT CSASTD. MSG USI NG VAP ' CXMNVAL'

0350 END- | F

0360 RESET CSASTD. MSG CSASTD. RETURN- CODE

0370 /*

0380 /* Performedits if going forward, else return to driver
0390 I F NOT *PF-KEY = #PDA-PF- Rl GHT OR = ' ENTR

0400 ESCAPE BOTTOM PROG.) | MVEDI ATE

0410 END- | F

0420 **SAG DEFI NE EXI T VALI DATE- DATA

- 251 -

7

Natural Construct Administration and Modeling User’s Manual

0430 *
0440 * Edit checks on nmap paraneters
0450 DECI DE FOR EVERY CONDI TI ON

0460 WHEN #PDA- GEN- PROGRAM = ' '
0470 REI NPUT ' Gen Program is required'
0480 MARK *#PDA- GEN- PROGRAM ALARM
0490 WHEN #PDA- SYSTEM = ' '

0500 REI NPUT ' Systemis required
0510 MARK *#PDA- SYSTEM ALARM

0520 WHEN #PDA-TI TLE = ' '

0530 REI NPUT 'Title is required
0540 MARK *#PDA- TI TLE ALARM

0550 WHEN #PDAX- DESCS(1) ="' '

0560 REI NPUT ' Descs is required
0570 MARK *#PDAX- DESCS(*) ALARM
0580 WHEN #PDAX- GDA = ' '

0590 REI NPUT ' Gda is required'
0600 MARK *#PDAX- GDA ALARM

0610 WHEN #PDAX- HEADERL = ' '

0620 REI NPUT ' Header1 is required'
0630 MARK *#PDAX- HEADERL ALARM
0640 WHEN NONE | GNORE

0650 END- DECI DE

0660 **SAG END-EXIT

0670 ESCAPE BOTTOM PROG.) | MVEDI ATE
0680 END- REPEAT /* PROG

0690 END

- 252 -

CST-Modify and CST-Modify-332 Model

Parameters for the CST-Modify-332 Model

The CST-Modify-332 model has one specification panel, Standard Parameters, and
one user exit panel. These panels are described in the following sections.

Standard Parameters Panel

CUGWA CST- Modi fy- 332 Subprogram CUGVWAO
Mar 25 St andard Paraneters 1of 1
Modul e name CXMNVA__

Paranmeter data area CXWNPDA_ *

Map nanme CXMNVAL_ *

Title

Description Mui nt enance for specification paraneters.____

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit user X main

Standard Parameters Panel for the CST-Modify-332 Model

- 253 -

Natural Construct Administration and Modeling User’s Manual

The fields on the Standard Parameters panel are:

Field Description

Module name Name specified on the Generation main menu. The name
of the modify subprogram must be alphanumeric and no
more than eight characters in length. Use the following
naming convention:

CXxxMy

where xx uniquely identifies your model and y is a letter
from A to J that identifies the maintenance panel (A for the
first maintenance panel, B for the second, etc.).

Parameter data Name of the parameter data area (PDA) for your model.
area Natural Construct determines the PDA name based on the
Module name specified on the Generation main menu.

For example, if you entered CXMNMA as the modify
subprogram name, Natural Construct assumes the PDA
name is CXMNPDA. Use the following naming convention:

CXxxPDA

where xx uniquely identifies your model.

Map name Name of the map for the modify subprogram. Natural
Construct determines the name of the map based on the
Module name specified on the Generation main menu.

For example, if you entered “CXMNMA” as the modify
subprogram name, Natural Construct assumes the map
name is CXMNMA1. The map must exist in the current
library, and the map name should correspond to the modify
subprogram name, with the addition of the language code.
For example:

Program Map
CXMNMA CXMNMAL1 (for English)

— 254 -

CST-Modify and CST-Modify-332 Model

Field Description (continued)

Title Title for the modify subprogram. The title identifies the
generated modify subprogram for the List Generated
Modules function on the Generation main menu and is
used internally for program documentation.

Description Brief description of the modify subprogram. The

description is inserted in the banner at the beginning of the
modify subprogram and is used internally for program
documentation.

— 255 -

Natural Construct Administration and Modeling User’s Manual

User Exits for the CST-Modify-332 Model

CSGSAMPL CST- Modi fy- 332 Subprogram CSGSM
Cct 09 User Exits 1of 1
User Exits Exi sts Sanpl e Requi red Conditional

_ CHANGE- HI STORY Subpr ogram

_ LOCAL- DATA

_ START- OF- PROGRAM

_ AFTER-I NPUT Exanpl e

_ PROCESS- SPECI AL- KEYS Subprogram X

_VALI DATE- DATA Subpr ogram

User Exits Panel for the CST-Modify-332 Model

For more information about user exits, see Supplied User Exits, page 305. For
information about the User Exit editor, see User Exit Editor, page 120, Natural
Construct Generation User’s Manual.

- 256 —

CST-PREGEN MODEL

This chapter describes the CST-Pregen model used to generate the pre-generation
subprogram for your model. The pre-generation subprogram is invoked after all
maintenance subprograms are executed during the generation phase or when the
SAMPLE command is issued from the User Exit editor.

The following topics are covered:

Introduction, page 258

Parameters for the CST-Pregen Model, page 259

User Exits for the CST-Pregen Model, page 261

— 257 -

Natural Construct Administration and Modeling User’s Manual

Introduction

After generating your maintenance subprograms, you can generate the pre-gener-
ation subprogram to assign #PDAC condition values based on user-supplied
parameters or other calculated values. The pre-generation subprogram also as-
signs the values of #PDA variables in the model PDA that are required by any
subsequent generation subprograms.

Generated using the CST-Pregen model, this subprogram is invoked after all main-
tenance subprograms are executed during the generation phase or when the
SAMPLE command is issued from the User Exit editor. It is the first user subpro-
gram invoked. (All #PDAC- condition values are reset before the generation
process is started.)

The pre-generation subprogram should also calculate the values of any #PDA vari-
ables required by subsequent generation subprograms. For simple models that do
not have code frames, this subprogram can also perform the functions of a genera-
tion subprogram. (Condition code values and derived fields can also be assigned
within the maintenance subprograms.)

For an example of a generated pre-generation subprogram, see the CUMNPR sub-
program in the SYSCST library.

— 258 —

CST-Pregen Model

Parameters for the CST-Pregen Model

Use the CST-Pregen model to generate the pre-generation subprogram. The CST-
Pregen model has one specification panel, Standard Parameters, and one user exit
panel. These panels are described in the following sections.

Standard Parameters Panel

CUGPMVA CST- Pregen Subprogram CUG MAO
Mar 26 St andard Paraneters 1of 1
Modul e name CXMNPR _

Paraneter data area CXWNPDA_ *

Title ...t Pre-generation subprogram

Description Pre-generate subprogram

Set conditions and assign shared PDA vari abl es. -

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit user X main

Standard Parameters Panel for the CST-Pregen Model

—259 -

Natural Construct Administration and Modeling User’s Manual

The fields on the Standard Parameters panel are:

Field

Description

Module name

Parameter data
area

Title

Description

Name specified on the Generation main menu. The name
of the pre-generation subprogram must be alphanumeric
and no more than eight characters in length. Use the
following naming convention:

CXxxPR

where xx uniquely identifies your model.

Name of the parameter data area (PDA) for your model.
Natural Construct determines the PDA name based on the
Module name specified on the Generation main menu.

For example, if you entered “CXMNPR” as the pre-
generation subprogram name, Natural Construct assumes
the PDA name is CXMNPDA. Use the following naming
convention:

CXxxPDA

where xx uniquely identifies your model.

Title for the pre-generation subprogram. The title
identifies the generated pre-generation subprogram for the
List Generated Modules function on the Generation main
menu and is used internally for program documentation.

Brief description of the pre-generation subprogram. The
description is inserted in the banner at the beginning of the
pre-generation subprogram and is used internally for
program documentation.

- 260 —

CST-Pregen Model

User Exits for the CST-Pregen Model

CSGSAMPL CST- Pregen Subpr ogram CSGSMD
Cct 10 User Exits 1of 1
User Exits Exi sts Sanpl e Requi red Conditional

_ CHANGE- HI STORY Subpr ogram

_ PARAMETER- DATA

_ LOCAL- DATA Exanpl e

_ ASSI GN\- DERI VED- VALUES Subpr ogr am

_ SET- CONDI TI ON- CODES Subpr ogr am X X

_ GENERATE- CCDE

_ BEFORE- CHECK- ERROR Exanpl e

_ ADDI TI ONAL- | NI TI ALI ZATI ONS Exanpl e

_ END OF- PROGRAM

User Exits Panel for the CST-Pregen Model

For more information about user exits, see Supplied User Exits, page 305. For
information about the User Exit editor, see User Exit Editor, page 120, in Natu-
ral Construct Generation User’s Manual.

- 261 -

Natural Construct Administration and Modeling User’s Manual

- 262 -

CST-POSTGEN MODEL

This chapter describes the CST-Postgen model used to generate the pre-generation
subprogram for your model. The post-generation subprogram supplies values for
the substitution parameters in the code frames. This is the final stage of the gen-
eration process.

The following topics are covered:
¢ Introduction, page 264
e Parameters for the CST-Postgen Model, page 265
¢ User Exits for the CST-Postgen Model, page 267

- 263 -

Natural Construct Administration and Modeling User’s Manual

Introduction

After you define the pre-generation subprogram, you can generate the post-gener-
ation subprogram to supply values for substitution parameters in the code frames
(identified by &). Generated using the CST-Postgen model, this subprogram is in-
voked as the final stage of the generation process when the application developer
enters “G” on the Generation main menu.

The post-generation subprogram substitutes the code frame parameters with the
corresponding substitution values by stacking the substitution parameters and
their corresponding values. Use the STACK TOP DATA FORMATTED statement
to stack these values. Natural Construct performs the corresponding substitutions
in the edit buffer and produces the final version of the generated program.

During the generation process, code lines specified in the code frame are written to
the edit buffer, as well as the output of the generation subprogram contained in the
code frame. Any substitution parameters are included in the edit buffer exactly as
they appear in the code frame.

For an example of a generated post-generation subprogram, see the CUMNPS sub-
program in the SYSCST library.

— 264 —

CST-Postgen Model

Parameters for the CST-Postgen Model

Use the CST-Postgen model to generate the post-generation subprogram. The
CST-Postgen model has one specification panel, Standard Parameters, and one
user exit panel. These panels are described in the following sections.

Standard Parameters Panel

CUGOVA CST- Post gen Subprogram CUGOMAO
Mar 26 St andard Paraneters 1of 1
Modul e name CXMNPS__
Model name *
Title ...t Post - gen subprogram
Description Post - generati on subprogram Stack post generation___
changes.

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit user X main

Standard Parameters Panel for the CST-Postgen Model

—265—

Natural Construct Administration and Modeling User’s Manual

The fields on the Standard Parameters panel are:

Field

Description

Module name

Model name

Title

Description

Name specified on the Generation main menu. The name
of the post-generation subprogram must be alphanumeric
and no more than 8 characters in length. Use the following
naming convention:

CXxxPS

where xx uniquely identifies your model.

Name of the model that uses the post-generation
subprogram. The model must be defined.

Title for the subprogram. The title identifies the generated
subprogram for the List Generated Modules function on
the Generation main menu and is used internally for
program documentation.

Brief description of the subprogram. The description is
inserted in the banner at the beginning of the subprogram
and is used internally for program documentation.

— 266 —

CST-Postgen Model

User Exits for the CST-Postgen Model

CSGSAMPL CST- Post gen Subprogram CSGSM
Cct 10 User Exits 1of 1
User Exits Exi sts Sanpl e Requi red Conditional

_ CHANGE- HI STORY Subpr ogram

_ PARAMETER- DATA

_ LOCAL- DATA Subpr ogr am

_ START- OF- PROGRAM Exanpl e

_ ADDI Tl ONAL- SUBSTI TUTI ON- VALUES Subprogram

_ BEFORE- CHECK- ERROR Exanpl e

_ ADDI TI ONAL- | NI TI ALI ZATI ONS Exanpl e

_ END OF- PROGRAM

User Exits Panel for the CST-Postgen Model

For more information about user exits, see Supplied User Exits, page 305. For
information about the User Exit editor, see User Exit Editor, page 120, in Natu-
ral Construct Generation User’s Manual.

- 267 —

Natural Construct Administration and Modeling User’s Manual

— 268 —

CST-FRAME MODEL

This chapter describes the CST-Frame model. This model creates sample subpro-
grams for user exits and generation subprograms to supply parameters to the
model.

The following topics are covered:
¢ Sample Subprograms, page 270
¢ Generation Subprograms, page 271
¢« Parameters for the CST-Frame Model, page 272
¢ User Exits for the CST-Frame Model, page 274

- 269 —

Natural Construct Administration and Modeling User’s Manual

Sample Subprograms

Sample subprograms are invoked from a user exit. For more information, see Pa-
rameters Supplied by User Exits, page 131. Generated using the CST-Frame
model, these subprograms help the developer create user exit code by providing a
starting sample. They can be simple or complicated, depending on the model.

When creating a sample subprogram, you can include additional parameters to
give the developer more control over what is generated into the user exit. To pass
additional information to the subprogram, use the CU—PDA.#PDAX-FRAME-
PARM variable.

Before invoking the sample subprograms, Natural Construct invokes all mainte-
nance subprograms and the pre-generation subprogram. This ensures that the
current specification parameters are valid and the conditions are set.

You can define a sample subprogram by entering “.E” at the beginning of a user exit
line in the Code Frame editor.

For more information about defining a sample subprogram, see Add User Exit
Points, page 132.

- 270 -

CST-Frame Model

Generation Subprograms

Generation subprograms are invoked from a code frame. For more information, see
Parameters Supplied by Generation Subprograms, page 128. Because the
lengths and contents of certain code frame parameters change based on user-sup-
plied input values or information in Predict, these parameters must be supplied by
the generation subprograms. The subprograms write statements to the Natural
edit buffer, based on user-supplied input parameters or other calculated values.

To write to the edit buffer, include a DEFINE PRINTER(SRC=1) OUTPUT
'SOURCE' statement in the subprogram that routes the output to the source work
area. To allow models to be ported to multiple platforms, use the CU--DFPR copy-
code member to define the SRC printer.

All WRITE, DISPLAY, and PRINT statement output for your print file is written
to the edit buffer. Use the NOTITLE option on each of these statements. If a DIS-
PLAY statement is used in the subprogram, also use the NOHDR option. When
trailing blanks should be suppressed in variable names, the PRINT statement can
be a useful alternative to the WRITE statement. However, you may want to in-
crease the line length of the edit buffer when using the PRINT statement, so
variable names are not split at the hyphen (-).

Because generation logic can be highly complex, these subprograms allow ultimate
flexibility. However, they are less maintainable than code frame statements be-
cause you must change Natural programs to modify the generated code.

Generation subprograms can also accept the #PDA-FRAME-PARM constant code
frame parameter from the CU—PDA common parameter data area. This parame-
ter allows a subprogram to be invoked several times within the generation process.
Each time the generation subprogram is invoked, it can use the value of this pa-
rameter to determine what to generate.

To invoke a generation subprogram, specify line type N at the > prompt in the Code
Frame editor. You can also specify the constant parameter value at this prompt.

For an example of a generated generation subprogram, see the CUMNGGL subpro-
gram in the SYSCST library.

—271-

Natural Construct Administration and Modeling User’s Manual

Parameters for the CST-Frame Model

Use the CST-Frame model to create the generation or sample subprogram. The
CST-Frame model has one specification panel, Standard Parameters, and one user
exit panel. These panels are described in the following sections.

Standard Parameters Panel

CUGFMA CST- Frame Subprogram CUG MAO
Mar 27 St andard Paraneters 1of 1
Modul e name CXIMNGGL_

Paraneter data area CXWNPDA_ *

Title ...t Framre ...__

Description Thi s generation/sanpl e subprogram..

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit user X main

Standard Parameters Panel for the CST-Frame Model

-272 -

CST-Frame Model

The fields on the Standard Parameters panel are:

Field

Description

Module name

Parameter data
area

Title

Description

Name specified on the Generation main menu. The name
of the subprogram must be alphanumeric and no more
than eight characters in length. Use the following naming
convention:

CXaxGyyy

where xx uniquely identifies your model and yyy identifies
your generation subprogram, or

CXxxSyyy

where xx uniquely identifies your model and yyy identifies
your sample subprogram.

Name of the parameter data area (PDA) for your model.
Natural Construct determines the PDA name based on the
Module name specified on the Generation main menu.

For example, if you entered CXMNGAAA, Natural
Construct assumes the PDA name is CXMNPDA. Use the
following naming convention:

CXxxPDA

where xx uniquely identifies your model.

Title for the frame subprogram. The title identifies the
generated frame subprogram for the List Generated
Modules function on the Generation main menu and is
used internally for program documentation.

Brief description of the frame subprogram. The description
is inserted in the banner at the beginning of the frame
subprogram and is used internally for program
documentation.

—273-

Natural Construct Administration and Modeling User’s Manual

User Exits for the CST-Frame Model

CSGSAMPL CST- Frame Subprogram CSGSMD
Cct 10 User Exits 1of 1
User Exits Exi sts Sanpl e Requi red Conditional
CHANGE- HI STORY Subpr ogram
PARAMETER- DATA
LOCAL- DATA

START- OF- PROGRAM

GENERATE- CCDE

BEFORE- CHECK- ERROR Exanpl e
ADDI TI ONAL- I NI TI ALI ZATI ONS Exanpl e
END- OF- PROGRAM

User Exits Panel for the CST-Frame Model

For more information about user exits, see Supplied User Exits, page 305. For
information about the User Exit editor, see User Exit Editor, page 120, in Natu-
ral Construct Generation User’s Manual.

—274 -

CST-DOCUMENT MODEL

This chapter describes the CST-Document model used to generate a document sub-
program for your model. The document subprogram writes information about
Natural Construct-generated modules in the Predict data dictionary.

The following topics are covered:
¢ Introduction, page 276
¢« Parameters for the CST-Document Model, page 277
¢ User Exits for the CST-Document Model, page 280

- 275 -

Natural Construct Administration and Modeling User’s Manual

Introduction

After you define the generation and sample subprograms, generate the document
subprogram to write information about Natural Construct-generated modules in

the Predict data dictionary. This information includes a description of the module,
as well as a description of the PF-keys and specification parameters for the module.

Note: Before you can document information about the generated modules, you
must define the #PDAX-DESCS(*) field within the model PDA.

Generated using the CST-Document model, this subprogram creates a free-form
description of the generated module using the specifications from the model panels.
You can write this information in any language for which you have translated help
text members.

The document subprogram writes the model description to Predict when the devel-
oper invokes the Save Specification and Source or Stow Specification and Source
function on the Generation main menu and presses PF5 (optns). For a description
of the Generation main menu, see Generation Main Menu, page 72 in the Natu-
ral Construct Generation User’s Manual.

For an example of a generated document subprogram, see the CUMND subpro-
gram in the SYSCST library.

—276 -

CST-Document Model

Parameters for the CST-Document Model

Use the CST-Document model to generate the document subprogram. The CST-
Document model has two specification panels, Standard Parameters and Addition-
al Parameters, and one user exit panel. These panels are described in the following
sections.

Standard Parameters Panel

CUGDVA CST- Docunent Subprogram CUGDVAO
Mar 27 St andard Paraneters 1 of 2
Modul e name CXM\D
Model nane *
Maps ... *
*

Transl ation LDAs ... *

*

Title ... Docunent ... -
Description Wites Predict docunentation for ...

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit right main

Standard Parameters Panel for the CST-Document Model

- 277 -

Natural Construct Administration and Modeling User’s Manual

The fields on the Standard Parameters panel are:

Field Description

Module name Name specified on the Generation main menu. The name
of the document subprogram must be alphanumeric and no
more than eight characters in length. Use the following
naming convention:

CXxxD

where xx uniquely identifies your model.

Model name Name of the model that uses the document subprogram.
The model must be defined.

Maps Names of all maps (specification panels) used by the model.
The document subprogram retrieves the specification
parameters from the specified maps.

Translation LDAs Names of the translation local data areas (LDAs) for the
specified maps. You can specify the names of up to 10
translation LDAs.

For more information about translation LDAs, see Step 7:
Create the Translation LDAs and Maintenance
Maps, page 163.

Title Title for the document subprogram. The title identifies the
generated document subprogram for the List Generated
Modules function on the Generation main menu and is
used internally for program documentation.

Description Brief description of the document subprogram. The
description is inserted in the banner at the beginning of the
document subprogram and is used internally for program
documentation.

- 278 —

CST-Document Model

Additional Parameters Panel

CUGDVB CST- Docunent Subpr ogr am CUGDVBO
Apr 09 Addi tional Paraneters 2 of 2
Help Text Type _
Maj or
M nor

Descri ption

POO~NOOUTAWNE

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit left wuserX main

Additional Parameters Panel for the CST-Document Model

On this panel, you can either:

¢ Specify the Type, Major, and Minor help text components in the applicable fields.
Natural Construct retrieves the description of all modules generated by the model
from the Help Text subsystem.

or

¢ Enter a brief description of all modules generated by the model on the lines dis-
played in the Description field.

The description is written to the Predict data dictionary.

- 279 -

Natural Construct Administration and Modeling User’s Manual

User Exits for the CST-Document Model

CSGSAMPL Nat ural Construct CSGSM
Mar 27 CST- Docunent User Exits 1 of 1
User Exit Exi sts Sanpl e Requi red Conditional
_ CHANGE- HI STORY Subpr ogram
LOCAL- DATA

START- OF- PROGRAM
ADDI TI ONAL- TRANSLATI ONS

_ ADDI TI ONAL- | NI TI ALI ZATI ONS Exanpl e
_DESCRI BE- | NPUTS Exanpl e

_ PF-KEYS Subpr ogr am
_ M SCELLANEOQOUS- VARI ABLES Subpr ogr am

END- OF- PROGRAM

User Exits Panel for the CST-Document Model

For more information about user exits, see Supplied User Exits, page 305. For
information about the User Exit editor, see User Exit Editor, page 120 in Natural
Construct Generation User’s Manual.

—280 -

CST-VALIDATE MODEL

This chapter describes the CST-Validate model used to generate the validation
subprogram for your model. During the generation process, the validation subpro-
gram verifies inputs for the model.

The following topics are covered:
¢ Introduction, page 282
¢ Parameters for the CST-Validate Model, page 283
¢ User Exits for the CST-Validate Model, page 285

281

Natural Construct Administration and Modeling User’s Manual

Introduction

If you code validations within maintenance panel modules, it is difficult to invoke
the validations from batch programs or GUI clients. Instead, you can consolidate
all model validation within a validation subprogram. To confirm input values for
your model, use the CST-Validate model to generate a validation subprogram and
then add the subprogram to the model record (on the Maintain Models panel).

The following example shows how to use a validation subprogram to validate in-
puts for a maintenance panel:

**SAG DEFI NE EXI T VALI DATE- DATA

ASS| GN CSAVAL. VALI DATE- SPECI FI C-FI ELD(1) = 'fiel dl'
ASS| GN CSAVAL. VALI DATE- SPECI FI C-FI ELD(2) = 'fi el d2'
ASS| GN CSAVAL. VALI DATE- SPECI FI C-FI ELD(3) = 'fiel d3'

CALLNAT ' CUBOVAL' CSAVAL
CUBOPDA /*your nodel PDA name
CU-PDA
CSAMARK
CSAERR
CSASTD
PERFORM REI NPUT- MESSAGE

*

**SAG END-EXIT

282

CST-Validate Model

Parameters for the CST-Validate Model

Use the CST-Validate model to generate a validation subprogram. The CST-Vali-
date model has one specification panel, Standard Parameters, and one user exit
panel. These panels are described in the following sections.

Standard Parameters Panel

CUVAMVA CST- Val i dat e Subpr ogram CUVAVAO
Jul 28 Standard Par aneters 1of 1
Mdule _
System............. 421
Title Val i date Subprogram..__
Description This Validation Subprogramw |l validate Inputs -

for the nodel:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
main help retrn quit user X nai n

Standard Parameters Panel for the CST-Validate Model

283

Natural Construct Administration and Modeling User’s Manual

The fields on the Standard Parameters panel are:

Field Description

Module Name specified on the Generation main menu. The name
of the validate subprogram must be alphanumeric and no
more than eight characters in length. Use the following
naming convention:

CXxxVAL

where xx uniquely identifies your model.

System Name of the system (by default, the name of the current
library). This is a required field.

The system name must be alphanumeric and need not be
associated with a Natural library ID. (The combination of
the module name and system name is used as a key to
access help information for the generated module.)

Title Title for the validate subprogram. The title identifies the
generated subprogram for the List Generated Modules
function on the Generation main menu and is used
internally for program documentation.

Description Brief description of the validate subprogram. The
description is inserted in the banner at the beginning of the
validate subprogram and is used internally for program
documentation.

Model PDA Name of the PDA used by the model for which you are
generating the validation subprogram.

284

CST-Validate Model

User Exits for the CST-Validate Model

CSGSAMPL Nat ural Construct CSGSM)
Jul 24 User Exits 1of 1
User Exit Exi sts Sanpl e Requi red Conditi onal
_ CHANGE- HI STORY Subpr ogr am
_ LOCAL- DATA
_ GENERATE- VALI DATI ONS
_ GENERATE- SUBROUTI NES Subpr ogr am

User Exits Panel for the CST-Validate Model

For more information about user exits, see Supplied User Exits, page 305. For
information about the User Exit editor, see User Exit Editor, page 120 in Natural
Construct Generation User’s Manual.

Coding Validations

The CST-Validate model codes validations as subroutines in the GENERATE-
SUBROUTINES user exit. For each #PDAX-FIELD-NAME field you want to vali-
date, create a subroutine called V-field-name to perform the validations. Whenever
a validation error is found, the V-field-name subroutine must:

Assign CSASTD.RETURN-CODE = ‘E’

Assign the error message in CSASTD . MSG

Perform an ESCAPE-ROUTINE to bypass subsequent checks
To retrieve SYSERR messages, use the CU--VERR copycode.

285

Natural Construct Administration and Modeling User’s Manual

Validating Array Fields

For array fields, the V-field-name subroutine validates all occurrences for which
validation is requested. These occurrences are supplied in the #INDEX . #FROM
(1:3) fields (redefined into #I1, #I2 and #13). To return multiple errors (for separate
field occurrences), perform the CHECK-AFTER-EDIT subroutine when an error
occurs within an array field. This will add the error to the error list but allow edit-
ing of subsequent indexes to occur. If you do not want to exit the current
subroutine, as with array processing, use the CU--VERZ copycode instead of the
CU--VERR copycode.

The following example shows the validation routine for a two-dimensional array
called #PDAX-PHYSICAL-KEY:

EE R R I R R S O R R R R R R S R
DEFI NE SUBROUTI NE V_PHYSI CAL- KEY

EE R R I R R S S O R R S R R R R R R
*

FOR #1 NDEX. #OCC(1) = #| NDEX. #FROM 1) TO #| NDEX. #THRU(1)
FOR #| NDEX. #OCC(2) = #| NDEX. #FROM 2) TO #| NDEX. #THRU(2)
/ *
/* Validat e #PDAX- PHYSI CAL- KEY(#1 1, #1 2)
ASSI GN CPAEL. FI LE- NAME = CUBGCPDA. #PDAX- PRI ME- FI LE
ASSI GN CPAEL. FI LE- CODE = CUBOPDA. #PDAX- PHYSI CAL- KEY(#1 1, #1 2)
ASSI GN CPAEL. DDM PREFI X = CPAFI . DDM PREFI X
CALLNAT ' CPUEL' CPAEL CSASTD
I F NOT CPAEL. #FI ELD- FOUND
ASSI GN CNAMSG. MSG- DATA(1)
ASSI GN CNAMSG. MSG- DATA(3)
| NCLUDE CU- - VER2 ' 0096'
"'*:1::2:not in:3:""!
' CUBOPDA. #PDAX- PHYSI CAL- KEY(#1 1, #1 2)"
END- | F
END- FOR
END- FOR
END- SUBRQUTI NE /* V_PHYSI CAL- KEY

CPAEL. FI ELD- NAMVE
CPAEL. FI LE- NAME

286

CST-STREAM MODEL

This chapter describes the CST-Stream model. This model generates a stream sub-
program that converts the contents of a model PDA between internal and streamed
format.

The following topics are covered:
¢ Introduction, page 288
¢« Parameters for the CST-Stream Model, page 289
¢ User Exits for the CST-Stream Model, page 291

287

Natural Construct Administration and Modeling User’s Manual

Introduction

When deploying a GUI front-end for a module on a Natural Construct client, Nat-
ural Construct must be able to translate the specification data passed to the server
from the client. To do this, the model requires a stream subprogram to convert the
contents of the model PDA into a format that can be transmitted between the client
and the server.

If your model generates modules for a Natural Construct client, generate the model
PDA and then use the CST-Stream model to generate the stream subprogram.

For more information about generating the model PDA, see CST-PDA Model,
page 215.

288

CST-Stream Model

Parameters for the CST-Stream Model

Use the CST-Stream model to generate a stream subprogram for your model. The
CST-Stream model has one specification panel, Standard Parameters, and one
user exit panel. These panels are described in the following sections.

Standard Parameters Panel

CUGTMA CST- St r eam Subpr ogr am CUGTMAO
Jul 24 St andard Paraneters 1of 1
Mdule _
System............. 421
Title Stream Subprogram..__
Description This Stream Subprogram wi Il convert Models:__

(...nmodel nane...)
PDA between internal and streaned formats.

Model PDA _ *
Generate trace code

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
main help retrn quit user X nai n

Standard Parameters Panel for the CST-Stream Model

289

Natural Construct Administration and Modeling User’s Manual

The fields on the Standard Parameters panel are:

Field Description

Module Name specified on the Generation main menu. The name
of the stream subprogram must be alphanumeric and no
more than eight characters in length. Use the following
naming convention:

CXxxT

where xx uniquely identifies your model.

System Name of the system (by default, the name of the current
library). This is a required field.

The system name must be alphanumeric and associated
with a Natural library ID. (The combination of the module
name and system name is used as a key to access help
information for the generated module.)

Title Title for the stream subprogram. The title identifies the
generated stream subprogram for the List Generated
Modules function on the Generation main menu and is
used internally for program documentation.

Description Brief description of the stream subprogram. The
description is inserted in the banner at the beginning of the
stream subprogram and is used internally for program

documentation.
Model PDA Name of the PDA used by the model for which you are
generating the stream subprogram.
Generate trace If this field is marked, extra code is generated into the
code stream subprogram to help trace inconsistencies between

data sent by the client and data expected by the server.

290

CST-Stream Model

User Exits for the CST-Stream Model

CSGSAMPL Nat ural Construct CSGSM)

Jul 24 User Exits 1of 1
User Exit Exi sts Sanpl e Requi red Conditi onal

_ CHANGE- HI STORY Subpr ogr am

_ LOCAL- DATA

_ ADDI TI ONAL- | NI TI ALI ZATI ONS Exanpl e

_ END- OF- PROGRAM

User Exits Panel for the CST-Stream Model

Note: Normally, this model does not require user exits.

For more information about user exits, see Supplied User Exits, page 305. For
information about the User Exit editor, see User Exit Editor, page 120 in Natural
Construct Generation User’s Manual.

201

Natural Construct Administration and Modeling User’s Manual

292

CST-SHELL MODEL

This chapter describes the CST-Shell model used to generate a template for a mod-
el subprogram.

The following topics are covered:
¢ Introduction, page 294
¢« Parameters for the CST-Shell Model, page 295
¢ User Exits for the CST-Shell Model, page 298

-293 -

Natural Construct Administration and Modeling User’s Manual

Introduction

The CST-Shell model generates a template for a model subprogram. It is similar to
the supplied Shell model (for information about the Shell model, see the Parame-
ters for the Shell Model, page 490, Natural Construct Generation User’s
Manual).

The main differences between the CST-Shell model and the Shell model are that
the CST-Shell model:

¢ Uses the Natural Construct V3.4.1 model subprogram structure to generate the
model components

e Supports regeneration
e Supports messaging

The CST-Shell model creates a DEFINE DATA ... END-DEFINE framework con-
taining definitions for the global data area (GDA), parameter data areas (PDAs),
local data areas (LDASs), or views specified on the Standard Parameters panel. It
also includes the required REPEAT loops and messaging subroutines. You can use
this time-saving model to generate startup modules for your model subprograms.

For an example of a generated shell program, see the CUMPSLFV subprogram in
the SYSCST library.

—294 —

CST-Shell Model

Parameters for the CST-Shell Model

Use the CST-Shell model to generate a shell program. The CST-Shell model has
one specification panel, Standard Parameters, and one user exit panel. These pan-
els are described in the following sections.

Standard Parameters Panel

CUGSMA CST- Shel | Program CUGSMAO
Jul 11 St andard Paraneters 1of 1
Modul e name CXMPSLFV
Modul e type _
Systemname NCSTDEMO *
Title ... CST nodule ...___
Description This CST nodule is used for ...
Messagi ng support .. _
G obal data area ... __ %
Paranmeter data area *
Local data area *
*
Views 1 *
2 *
3 *
4 *
5 *

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
main help retrn quit user X mai n

Standard Parameters Panel for the CST-Shell Model

—295 -

Natural Construct Administration and Modeling User’s Manual

The fields on the Standard Parameters panel are:

Field Description

Module name Name of the shell program you are creating (by default, the
name specified in the Module name field on the Generation
main menu). This is a required field.

The module name must follow standard Natural naming
conventions, must be alphanumeric, and cannot be more
than eight characters in length.

Module type Code for the type of module for which you are creating the
shell program. Valid codes are:

¢ P (program)

¢ N (subprogram)
¢ H (helproutine)
¢ S (subroutine)

System name Name of the system (by default, the name of the current
library). This is a required field.

The system name must be alphanumeric, no more than 32
characters in length, and does not have to be associated
with a Natural library ID. (The combination of the module
name and system name is used as a key to access help
information for the generated module.)

Title Title for the shell program. The title identifies the
generated shell program for the List Generated Modules
function on the Generation main menu and is used
internally for program documentation.

Description Brief description of the shell program. The description is
inserted in the banner at the beginning of the shell
program and is used internally for program
documentation.

Messaging support If this field is marked, the shell program supports the
dynamic translation of messages.

—-296 —

CST-Shell Model

Field

Description (continued)

Global data area

Parameter data
area

Note:

Local data area

Views

Name of the global data area used by the generated
module.

Names of up to five inline parameter data areas used by
the generated module.

If the Module type is P (program) or S (subroutine), you
cannot specify parameter data.

Names of up to 10 inline or external local data areas used
by the generated module.

Names of up to five Predict views used by the generated
module.

- 297 -

Natural Construct Administration and Modeling User’s Manual

User Exits for the CST-Shell Model

CSGSAMPL CST- Shel I Program CSGSM
Cct 10 User Exits 1of 1
User Exits Exi sts Sanpl e Requi red Conditional
CHANGE- HI STORY Subpr ogram
PARAMETER- DATA
LOCAL- DATA Exanpl e

START- OF- PROGRAM

GENERATE- CCDE

BEFORE- CHECK- ERROR Exanpl e
ADDI TI ONAL- I NI TI ALI ZATI ONS Exanpl e
END- OF- PROGRAM

User Exits Panel for the CST-Shell Model

For more information about user exits, see Supplied User Exits, page 305. For
information about the User Exit editor, see User Exit Editor, page 120 in Natural
Construct Generation User’s Manual.

- 298 —

USER EXITS FOR THE NATURAL CONSTRUCT
MODELS

This chapter describes the user exits supplied for the Natural Construct adminis-
tration models. Administration models generate the model subprograms used by
all models.

The following topics are covered:
¢ Introduction, page 300
* User Exits, page 301
¢ Supplied User Exits, page 305

—-299 -

Natural Construct Administration and Modeling User’s Manual

Introduction

This chapter describes the user exits for the following Natural Construct adminis-
tration models:

¢ (CST-Clear
¢ (CST-Read
¢ (CST-Save

e CST-Modify and CST-Modify-332
¢ CST-Pregen

¢ CST-Postgen

¢ CST-Frame

¢ CST-Document

e (CST-Validate

¢ CST-Stream

e CST-Shell

—300 -

User Exits for the Natural Construct Models

User Exits

User exits insert customized or specialized processing in a Natural Construct-gen-
erated module. Changes to the user exit code are always preserved upon
regeneration of the module.

Natural Construct models provide a wide variety of user exits. You can select from
a list of available exits by entering SAMPLE at the > prompt in the User Exit edi-
tor. (For more information, see Supplied User Exits, page 305.)

The exits vary depending on the type of module you are generating. Some exits con-
tain sample code or subprograms, while others generate the DEFINE EXIT...END-
EXIT lines only — you provide the actual code. You can modify any user exit code
generated into the edit buffer.

If you require code to be inserted in a generated module where no user exit current-
ly exists, have your Natural Construct administrator recommend a suitable exit or
add a new exit to the model.

Reusing User Exit Code

When you specify a new model on the Generation main menu and the source buffer
contains code, you can retain that code and use it with the model you are creat-
ing.This functionality saves time and effort when creating modules that use the
same code.

If the source buffer contains code when you specify a new model, the following win-
dow is displayed:

Nat ural Construct CSGNEW)
CLEAR Source Area

Mark if you wish to clear the source area

CLEAR Source Area Window

-301-

Natural Construct Administration and Modeling User’s Manual

To retain the code in the source buffer for use with the new model, press Enter in
this window. The first specification panel for the new model is displayed. Natural
Construct retains the user exit code for use with the new module.

To clear the code in the source buffer (and not save it for the new module), enter
any non-blank character in the Mark if you wish to clear the source area field. The
source buffer is cleared and the first specification panel for the model you are cre-
ating is displayed.

Invoking the User Exit Editor

You can invoke the User Exit editor from the Generation main menu (using the
User Exit Editor function) or from the last specification panel for a model that sup-
ports user exits (by pressing PF11).

To invoke the User Exit editor from the Generation main menu, see User Exit Ed-
itor, page 120 in Natural Construct Generation User’s Manual.

To invoke the User Exit editor from the model specification panels, press PF11
(userX) on the last specification panel for a model that supports user exits:

e If user exits are defined for the specified module, the existing user exit code is dis-
played in the User Exit editor. (To select additional exits, enter SAMPLE at the >
prompt to display the User Exits panel.)

¢ If no user exits are defined for the specified module, the User Exits panel for the
model is displayed.

User Exits Panel
» To invoke the User Exits panel from the User Exit editor:

Type “SAMPLE” at the > prompt in the User Exit editor.

Press Enter.
A selection panel of available user exits for the specified model is displayed. The
available user exits vary, depending on what type of module you are generating.

Note: The SAMPLE command is performed automatically when you invoke the
User Exit editor and no user exits are defined for the specified module.

-302 -

User Exits for the Natural Construct Models

The following example shows the first User Exits panel for the CST-Clear model:

CSGSAMPL CST- Cl ear Subprogram CSGSMD
Cct 09 User Exits 1of 1
User Exits Exi sts Sanpl e Requi red Conditional

_ CHANGE- HI STORY Subpr ogram

_ PARAMETER- DATA

_ LOCAL- DATA

_ PROVI DE- DEFAULT- VALUES Subpr ogr am

_ BEFORE- CHECK- ERROR Exanpl e

_ ADDI TI ONAL- | NI TI ALI ZATI ONS Exanpl e

END- OF- PROGRAM

User Exits for the CST-Clear Model

The fields on the User Exits panel is similar for all models:

Field Description

User Exits Names of the user exits available for this model. If a user
exit is required and not conditional (its existence is not
based on condition codes in the code frames), it is marked
by default.

Exists If the corresponding user exit is defined (exists), “X” is
displayed. If the user exit does not exist, this field is blank.

Sample If the user exit is empty (contains DEFINE EXIT ... END-
EXIT lines), this field is blank. If the user exit contains a
subprogram, “Subprogram” is displayed. If the user exit
contains sample code, “Example” is displayed.

Required If the user exit must be specified, X is displayed. If the user
exit is optional, this field is blank.

Conditional If the user exit is conditional (its existence is based on
condition codes in the code frames), X is displayed.

- 303 -

Natural Construct Administration and Modeling User’s Manual

» To select a user exit displayed on the User Exits panel:

1 Type an “X” in the input field to the left of each user exit you want to use.

2 Press Enter.
The selected user exits are displayed in the User Exit editor.

You can define user exits directly in the User Exit editor — without using the SAM-
PLE command, and you can change the generated code as desired. All user exit
code is preserved when a module is regenerated. Fully qualify all references to da-
tabase fields in the user exits with the file name.

Defining User Exits

The code you specify in a user exit depends on the type of module you are generat-
ing and the type of user exit you are using. However, all Natural Construct user
exits have the following format:

0010 DEFINE EXIT user-exit-nanme
0020 user exit code
0030 END-EXI T user-exit-nanme

Note: Do not insert comments or Natural code on the DEFINE EXIT and END-
EXIT lines.

Note: If multiple user exits are generated with the same name, Natural Con-
struct will merge them into a single user exit in the generated module.

- 304 -

User Exits for the Natural Construct Models

Supplied User Exits

The following sections describe the user exits available for the Natural Construct
administration models. The sections are listed in alphabetical order, based on the
user exit name. For many exits, one or more examples are also included.

ADDITIONAL-INITIALIZATIONS

This user exit generates the framework for any additional initializations per-
formed in the INITIALIZATIONS subroutine.

Example of code generated by the ADDITIONAL-INITIALIZATIONS user exit

** SAG DEFI NE EXI' T ADDI TI ONAL-1 NI Tl ALl ZATI ONS

*

* Assign paraneters for help routine CD HELPR
MOVE 'CU TO #MAJOR- COMPONENT

MOVE *PROGRAM TO #M NOR- COVPONENT

*

**SAG END- EXI T

*

END- SUBROUTI NE /* | NI TI ALI ZATI ONS

ADDITIONAL-SUBSTITUTION-VALUES

This user exit is used in combination with the LOCAL-DATA user exit. It generates
STACK statements for code frame parameters that do not have a corresponding
variable in the model PDA.

- 305 -

Natural Construct Administration and Modeling User’s Manual

Example of code generated by the ADDITIONAL-SUBSTITUTION-VALUES user exit

DEFI NE EXI T ADDI TI ONAL- SUBSTI TUTI ON- VALUES
*

* Substitution for frame paraneters that are not defined in the
* nodel PDA.
STACK TOP DATA FORMATTED ' &CENTERED- HEADER1'
#CENTERED- HEADER1
STACK TOP DATA FORMATTED ' &CENTERED- HEADER2'
#CENTERED- HEADER2
STACK TOP DATA FORMATTED ' &DATE- EM
#DATE- EM
STACK TOP DATA FORMATTED ' &EOD- TABT'
#EOD- TABT
STACK TOP DATA FORMATTED ' &EXPORT- DELI M TER
#EXPORT- DELI M TER
STACK TOP DATA FORMATTED ' >- LT
#GT- LT
STACK TOP DATA FORMATTED ' &HEADL- LEN
#HEAD1- LEN
STACK TOP DATA FORMATTED ' &HEAD2- LEN
#HEAD2- LEN
STACK TOP DATA FORMATTED ' & NPUT- LI NES'
#1 NPUT- LI NES
STACK TOP DATA FORMATTED ' &KEY- PREFI X
#KEY- PREFI X
STACK TOP DATA FORMATTED ' <- GTI'
#LT- GT
STACK TOP DATA FORMATTED ' &PARM NAT- FORVAT'
#PARM NAT- FORMAT
STACK TOP DATA FORMATTED ' &PREFI X- NAT- FORMAT'
#PREFI X- NAT- FORMVAT
STACK TOP DATA FORMATTED ' &SEL- TBL- Sl ZE'
#SEL- TBL- SI ZE
STACK TOP DATA FORMATTED ' &TI ME- EM
#TI ME- EM
STACK TOP DATA FORMATTED ' &UQ
#UQ
STACK TOP DATA FORMATTED ' &UQ FOUND
#UQ FOUND
STACK TOP DATA FORMATTED ' &VALUE- UQ
#VALUE- UQ
STACK TOP DATA FORMATTED ' &VAR- UQ
#VAR- UQ

— 306 —

User Exits for the Natural Construct Models

STACK TOP DATA FORVATTED ' &VI EW LDA'
#VI EW LDA

STACK TOP DATA FORVATTED ' &W NDOW W DTH
#W NDOWM W DTH

STACK TOP DATA FORVATTED ' &W TH- BLOCK'
#W TH- BLOCK

END- EXI T ADDI TI ONAL- SUBSTI TUTI ON- VALUES

- 307 -

Natural Construct Administration and Modeling User’s Manual

ADDITIONAL-TRANSLATIONS

This user exit generates the framework for additional translations performed in
the GET-PROMPT-TEXT subroutine.

Example of code generated by the ADDITIONAL-TRANSLATIONS user exit

3070 **SAG DEFI NE EXI T ADDI TI ONAL- TRANSLATI ONS

3080 *

3090 | F #FI RST- TRANSLATI ON OR CU- - PDA. #PDA- PHASE = CSLPHASE. #TRANSLATE
3100 THEN

3110 PERFORM SET- MODI FY- HEADER3

3120 /*

3130 /* Set conpl eted nessage

3140 RESET CNAMSG. | NPUT- QUTPUTS

3150 ASSI GN CNAMSG. M5G- DATA(1) = #PDA- FRAVE- PARM

3160 ASSI GN CNAMSG. M5G = CUBASRPL. #RETURN- MESSAGE

3170 PERFORM GET- MESSAGE- TEXT

3180 ASSI GN CUBASRPL. #RETURN- MESSAGE = CNAMSG MSG

3190 RESET CNAMSG. | NPUT- QUTPUTS

3200 /*

3210 /* Assign avail abl e keys

3220 ASSI GN CU- - PDA. #PDA- AVAI LABLEL- NAVE = #AVAI LABLEL- NAMVE
3230 ASSI GN CU- - PDA. #PDA- AVAI LABLE2- NAVE = #AVAI LABLE2- NAME
3240 ASSI GN CU- - PDA. #PDA- AVAI LABLE3- NAVE = #AVAI LABLE3- NAME
3250 RESET #FI RST- TRANSLATI ON

3260 /*

3270 /* Override pfkey settings

3280 RESET #LOCAL- PFKEYS- REQUI RED

3290 /*

3300 /* Set all PF-keys naned off

3310 I NCLUDE CU- - SOFF

3320 /*

3330 /* Set Hel p and Return keys

3340 SET KEY DYNAM C CU- - PDA. #PDA- PF- HELP = HELP
3350 NAMED CU- - PDA. #PDA- HELP- NAME
3360 SET KEY DYNAM C CU- - PDA. #PDA- PF- RETURN
3370 NAMED CU- - PDA. #PDA- RETURN- NAME
3380 END- | F

3390 **SAG END-EXI T

- 308 —

User Exits for the Natural Construct Models

AFTER-INPUT

The code in this exit is executed immediately after each input panel is displayed
and the standard keys and direct commands are processed (AT END OF PAGE sec-
tion). You can use this exit to define validity edits for user-defined fields or to add
non-standard PF-key processing to a module.

For example, when you add a non-standard PF-key, you can set the #SCROLLING
variable to TRUE so the generated module does not trap the PF-key as invalid. Af-
ter processing the non-standard key, include the PERFORM NEW-SCREEN code
to return to the main panel (main INPUT statement) for the module.

Note: Ifyou do not include the PERFORM NEW-SCREEN code and continue
with execution after processing this exit, an Invalid PF-key error message
is displayed.

Example of user exit code for the Browse* models

0010 DEFI NE EXI T AFTER- | NPUT
0020 *

0030 * Processing to be performed i mediately after the exit checks,
0040 * after input.

0050 IF NOT (#OPTION ="' " OR="'M OR='S OR='C) THEN

0060 REI NPUT 'Valid options are "M, "S" or "C' or blank'

0070 MARK *#OPTI ON ALARM

0080 END-I F

0090 END- EXI T AFTER- | NPUT

Example of user exit code for the Object-Maint-Dialog model

0010 DEFI NE EXI T AFTER- | NPUT

0020 /*

0030 /* Conpute total for current product |ine

0040 COWVPUTE ORDER. TOTAL- COST(#ARRAY1) = ORDER QUANTI TY(#ARRAY1) *
0050 ORDER. UNI T- COST(#ARRAY1)
0060 END- EXI T AFTER- | NPUT

- 309 -

Natural Construct Administration and Modeling User’s Manual

AFTER-INVOKE-SUBPANELS

This user exit generates the framework for any processing performed after sub-
panels are invoked.

Example of code generated by the AFTER-INVOKE-SUBPANEL S user exit

0100 DEFI NE EXIT AFTER- | NVOKE- SUBPANELS
0110 PERFORM SET- MORE- | NDI CATCRS
0120 END-EXIT

ASSIGN-DERIVED-VALUES

This user exit generates initialization statements for all #PDA variables in the
model PDA. The variables are assigned null default values. You can modify the
generated code as desired.

Note: Ifyou add specification parameters to the model PDA, you can get the
sample statements for the new parameters by regenerating this user exit.
Regeneration adds the new variables, but does not modify code from the
previous generation.

-310 -

User Exits for the Natural Construct Models

Example of code generated by the ASSIGN-DERIVED-VALUES user exit

DEFI NE EXI T ASSI GN- DERI VED- VALUES
*

* |nitialize '#PDA-' paranmeters in PDA

ASSI GN
ASSI GN
ASSI GN
ASSI GN
ASSI GN
ASSI GN
ASSI GN
ASSI GN
ASSI GN
ASSI GN
ASSI GN
ASSI GN
ASSI GN
ASSI GN
ASSI GN
ASSI GN
END- EXI T

#PDA- FI ELD- TYPE = '
#PDA- FI ELD- REDEFI NED = FALSE
#PDA- LEVEL- NUMBER = 0

#PDA- FI ELD- FORVAT = '

#PDA- FI ELD- LENGTH = 0
#PDA-UNI TS = 0
#PDA- DECI MALS = 0
#PDA- FROM | NDEX(*)
#PDA- THRU- | NDEX(*)
#PDA- FI ELD- RANK = 0
#PDA- FI LE- CODE
#PDA- MAX- LI NES
#PDA- WFRAME = '
#PDA- WENGTH = '
#PDA- WCOLUWN = '
#PDA- WBASE = '

ASSI G\ DERI VED- VALUES

=0
=0

-311 -

Natural Construct Administration and Modeling User’s Manual

BEFORE-CHECK-ERROR

This user exit generates the framework for any processing performed before a stan-
dard error check.

Note: When an error condition occurs, the END-OF-PROGRAM user exit is by-
passed. If a model subprogram requires processing before leaving the pro-
gram, use this user exit to specify the processing.

Example of code generated by the BEF ORE-CHECK-ERROR user exit

1320 **SAG DEFI NE EXI T BEFORE- CHECK- ERRCR

1330 *

1340 * Use this user exit for specific error checking
1350 | F CSASTD. RETURN- CODE = CSLRCCDE. #| NTERRUPT(*)
1360 ASSI GN C- - PDA. #PDA- PHASE = #SAVE- PHASE

1370 END-IF

1380 **SAG END-EXI T

BEFORE-INPUT

The code in this exit is executed immediately before the INPUT statement is pro-
cessed in the AT END OF PAGE section. You can use this exit to:

¢ Look up a code table (to display a description, as well as a code value)
¢ Issue SET CONTROL statements

¢ Capture or default map variables prior to displaying each panel

-312 -

User Exits for the Natural Construct Models

Example of user exit code for the Browse-Select-Subp model

0010 DEFI NE EXI T BEFORE- | NPUT

0020 *

0030 * Processing to be perfornmed before the | NPUT statenent.

0040 * Change standard nessage to indicate that sel ection can be done
ONLY

0050 * by positioning the cursor (not entering key value since input is
0060 * protected).

0070 ASSI GN MSG | NFO. ##M5G = ' Position cursor to select.'

0080 END- EXI T BEFORE- | NPUT

Example of user exit code for the Menu model

0010 DEFINE EXI T BEFORE-| NPUT
*

0020

0030 * Processing to be performed before each | NPUT statenent.

0040 SET CONTRCL ' WB' /* Restore wi ndow size to physical screen
si ze.

0050 END- EXI T BEFORE-| NPUT

Example of user exit code for the Object-Maint-Dialog model

0010 DEFI NE EXI T BEFORE- | NPUT

0020 *

0030 * If order lines were scrolled, set distributions array to 1
0040 | F #LAST- ARRAY1 NE #ARRAY1 THEN

0050 ASSI GN #ARRAY2 = #NEXT- ARRAY2 = #CURR-| NDEX(#PANEL,2) = 1
0060 END- | F

0070 ASS| GN #LAST- ARRAY1 = #ARRAY1

0080 /*

0090 /* Update total for the order

0100 COVPUTE ORDER. ORDER- AMOUNT = 0 + ORDER. TOTAL- COST(*)

0110 END- EXI T BEFORE- | NPUT

-313 -

Natural Construct Administration and Modeling User’s Manual

BEFORE-INVOKE-SUBPANELS

This user exit generates the framework for any processing performed before sub-
panels are invoked.

Example of code generated by the BEF ORE-INVOKE-SUBPANELS user exit

0680 DEFI NE EXI T BEFORE- | NVOKE- SUBPANELS

0690 | F CU- - PDA. #PDA- PHASE NE CSLPHASE. #TRANSLATE THEN
0700 PERFORM VALI| DATE- FI LE- | NFO

0710 END- | F

0720 END-EXIT

BEFORE-REINPUT-MESSAGE

The code in this user exit allows you to interrogate the message codes and override
the display logic for the generated messages. For example, if the logic specifies that
a message is ignored, you can display the message. If the logic specifies that the
program is interrupted, you can terminate the program.

Example of code generated by the BEF ORE-REINPUT-MESSAGE user exit

0010 END- SUBROUTI NE /* | NPUT- SCREEN
*

0020

0030 * DEFI NE SUBROUTI NE REI NPUT- MESSAGE

0040 *

0050 **SAG DEFI NE EXI T BEFORE- REI NPUT- MESSAGE

0060 | F CSASTD. RETURN- CODE = CSLRCODE. #COMMUNI CATI ON THEN
0070 ESCAPE BOTTOM PROG.) | MVEDI ATE

0080 END- | F
0090 **SAG END-EXIT
0100 DECI DE FOR FI RST CONDI Tl ON

0110 WHEN CSASTD. RETURN- CODE = CSLRCCDE. #CONTI NUE(*)
0120 | GNORE

0130 WHEN CSASTD. RETURN- CODE = CSLRCCDE. #| NTERRUPT(*)
0140 ESCAPE BOTTOM NEW SCREEN)

0150 WHEN NONE

0160 | GNORE

0170 END- DECI DE

-314 -

User Exits for the Natural Construct Models

BEFORE-STANDARD-KEY-CHECK

The code in this user exit checks any additional PF-keys defined for a modify sub-
program or prepares for standard PF-key validations.

Example of code generated by the BEF ORE-STANDARD-KEY-CHECK user exit

DEFI NE EXI T BEFORE- STANDARD- KEY- CHECK
*

* Use this user exit to check additional PF-keys or prepare for the
* standard PF-key check.
END- EXI T BEFORE- STANDARD- KEY- CHECK

CHANGE-HISTORY

This user exit keeps a record of changes to the generated module. It generates com-
ment lines indicating the date, the user ID of the user who created or modified the
module, and a description of any change.

Example of code generated by the CHANGE-HI STORY user exit

DEFI NE EXI T CHANGE- HI STORY

* Changed on Aug 27,01 by SAG for release
* o>

* o>

* o>

END- EXI T CHANGE- HI STORY

-315-

Natural Construct Administration and Modeling User’s Manual

DESCRIBE-INPUTS

This user exit contains statements that document specification parameter values
(#PDAX variables) in the model PDA. For example, if you are documenting a menu
program, this user exit contains the menu function codes and descriptions.

Example of code generated by the DESCRIBE-INPUTS user exit

DEFI NE EXI T DESCRI BE- | NPUTS
*

* Enter other npdel paraneters to be docunented.

* Use WRITE statenments of the followi ng format:

* WRI TE(SRC) NOTI TLE LDA. #Vari abl e- nanme #PDAX- vari abl e- nanme
END- EXI T DESCRI BE- | NPUTS

END-OF-PROGRAM

The code in this exit is executed once before the module is terminated. You can use
this exit for any cleanup required (such as assigning a termination message or re-
setting windows) before exiting the module.

Note: You can assign the current key value to a global variable in this exit, so it
is carried into other modules that use the same key.

Note: If an error condition occurs, this user exit will not be executed. Use the
BEFORE-CHECK-ERROR user exit if processing is required before leav-
ing the program.

-316 -

User Exits for the Natural Construct Models

Example of user exit code for the Object-Subp model

0010 DEFI NE EXI T END- OF- PROGRAM

0020 FOR #1 =1 TO 3

0030 * Strip Ncst off of file name references in nmessages.

0040 | F MSG | NFO. ##M5G- DATA(#1) = MASK(' Ncst ') THEN

0050 RESET MSG | NFO. ##NMSG- DATA- CHAR(#l , 1: 4)

0060 MOVE LEFT MSG- | NFO ##MSG- DATA(#1) TO MSG | NFO. ##MSG- DATA(#1)
0070 END-IF

0080 END- FOR

0090 END- EXI T END- OF- PROGRAM

GENERATE-CODE

This user exit generates the framework for any code generated by a model
subprogram.

-317 -

Natural Construct Administration and Modeling User’s Manual

Example of code specified in the GENERATE-CODE user exit

DEFI NE EXI T GENERATE- CODE
*

RESET CSASELFV CSASELFV. GENERAL- | NFORVATI ON
CSASELFV. FI ELD- SPECI FI CATI ON(*)
MOVE CUMPPDA. #PDAX- VI EW LPDA- STRUCT- NAME(*) TO
CSASELFV. #VI EW LPDA- STRUCT- NAME(*)

MOVE CUMPPDA. #PDAX- FI ELD- NAME(*) TO CSASELFV. FI ELD- NAME(*)
MOVE CUMPPDA. #PDAX- FI ELD- FORVAT(*) TO CSASELFV. FI ELD- FORVAT(*)
MOVE CUMPPDA. #PDAX- FI ELD- LENGTH(*) TO CSASELFV. FI ELD- LENGTH(*)
FOR #1 = 1 TO #MAX- FLDS

MOVE CUMPPDA. #PDAX- MAX- OCCURS(#1) TO

CSASELFV. FI ELD- OCCURRENCES(#1 , 1)
END- FCR
MOVE CUMPPDA. #PDAX- STRUCTURE- NUMBER(*) TO
CSASELFV. #STRUCTURE- NUMBER(*)
MOVE CUMPPDA. #PDAX- FI ELD- PROWPT- OR- TEXT(*) TO
CSASELFV. FI ELD- HEADI NGS(*)
ASSI GN CSASELFV. #ARRAY- RANK- SELECTED = 1
CALLNAT ' CSUSELFV' CSASELFV
CU- - PDA
CSASTD
ASSI GN CSASTD. ERROR- FI ELD- | NDEX1 = CSASELFV. #ERROR- FI ELD- | NDEX
PERFORM CHECK- ERROR
RESET CSASTD. ERROR- FI ELD- | NDEX1
MOVE CSASELFV. FI ELD- NAME(*) TO CUMPPDA. #PDAX- FI ELD- NAME(*)
MOVE CSASELFV. FI ELD- FORVAT(*) TO CUMPPDA. #PDAX- FI ELD- FORVAT(*)
MOVE CSASELFV. FI ELD- LENGTH(*) TO CUMPPDA. #PDAX- FI ELD- LENGTH(*)
MOVE CSASELFV. #STRUCTURE- NUMBER(*) TO
CUMPPDA. #PDAX- STRUCTURE- NUVBER(*)
MOVE CSASELFV. FI ELD- HEADI NGS(*) TO
CUMPPDA. #PDAX- FI ELD- PROVPT- OR- TEXT(*)
MOVE CSASELFV. #VI EW LPDA- STRUCT- NAME(*) TO
CUMPPDA. #PDAX- VI EW LPDA- STRUCT- NAME(*)

FOR #1 = 1 TO #MAX- FLDS

MOVE CSASELFV. FI ELD- OCCURRENCES(#1 , 1)

TO CUWPPDA. #PDAX- MAX- OCCURS(#1)
EXAM NE CUMPPDA. #PDAX- FI ELD- PROVPT- OR- TEXT(#l) FOR '/'
REPLACE WTH ' '
END- FCR
END- EXI T GENERATE- CODE

-318 -

User Exits for the Natural Construct Models

GENERATE-SUBROUTINES

This user exit generates the framework for validations performed by the model val-
idation subprogram. It is used in conjunction with the GENERATE-
VALIDATIONS user exit and is available for modules generated using the CST-
Validate model. For more information, refer to CST-Validate Model, page 281.

In this user exit, code validations as subroutines. For each #PDAX-FIELD-NAME
field you want to validate, create a subroutine called V-field-name to perform the
validations. Whenever a validation error is found, the V-field-name subroutine
must:

* Assign CSASTD.RETURN-CODE = ‘E’

¢ Assign the error message in CSASTD.MSG

¢ Perform an ESCAPE-ROUTINE to bypass subsequent checks
To retrieve SYSERR messages, use the CU--VERR copycode.

For information about coding validations for array fields, refer to Validating Ar-
ray Fields, page 286.

GENERATE-VALIDATIONS

This user exit generates the framework for validations performed by the model val-
idation subprogram. It is used in conjunction with the GENERATE-
SUBROUTINES user exit and is available for modules generated using the CST-
Validate model. For more information, refer to CST-Validate Model, page 281.

-319 -

Natural Construct Administration and Modeling User’s Manual

INPUT-ADDITIONAL-PARAMETERS

This user exit contains an INPUT statement to read parameters that are not auto-
matically included in a read subprogram.

Example of code generated by the INPUT-ADDITIONAL-PARAMETERS user exit

DEFI NE EXI T | NPUT- ADDI TI ONAL- PARAMETERS
Input all other paraneters..

/* I nput parameter SAMPLE
WHEN #LI NE = ' SAMPLE: "
I NPUT CXMYPDA. #PDAX- SAMPLE
END- EXI T | NPUT- ADDI TI ONAL- PARAMETERS

E R

INPUT-SCREEN

This user exit generates code to input screens (maps) for a modify subprogram.

Example of code generated by the INPUT-SCREEN user exit

DEFI NE EXI T | NPUT- SCREEN
| F CSASTD. RETURN- CODE = CSLERRCR #OK OR = CSLERROR. #WARNI NG
| NPUT W TH TEXT CSASTD. M5G
MARK PCSI TI ON CSAVARK. ERROR- COLUWN | N CSAMARK. ERROR- PCS
USI NG MAP ' map’
ELSE
| NPUT W TH TEXT CSASTD. M5G
MARK PCSI TI ON CSAMARK. ERROR- COLUWN | N CSAMARK. ERROR- PCS
ALARM
USI NG MAP ' map’
END- 1 F
END- EXI T | NPUT- SCREEN

-320 -

User Exits for the Natural Construct Models

LOCAL-DATA

The code in this exit defines additional local variables that are used in conjunction
with other user exits. If you are using this user exit with either a Browse, Browse-
Select, or Object-Browse series model, a window is displayed from which you can
select an option.

Using with a Browse*/Browse-Select*/Object-Browse* Model

If you specify a view name on a Browse*/Browse-Select*/Object-Browse® model
specification panel, you must define the view for the file. Mark the LOCAL-DATA
user exit and press Enter to display the LOCAL-DATA User Exit window:

CUSCSLDA Nat ural Construct
Aug 29 LOCAL- DATA User Exit 1of 1

Define View of Primary File ..
Define Local Using Data Area .

LOCAL-DATA User Exit Window

Note: Sample code is available in this exit.

To define the entire primary file view in the user exit, mark the Define View of Pri-
mary File field and press Enter. You can then edit the sample code and delete the
fields you do not want.

If the view is defined in a local data area (LDA), enter the name of the LDA in the
Define Local Using Data Area field.

Note: Ifyou are using the LOCAL-DATA user exit with a model other than a
Browse, Browse-Select, or Object-Browse series model, the LOCAL-DATA
User Exit window is not displayed.

-321-

Natural Construct Administration and Modeling User’s Manual

Example of user exit code in the LOCAL-DATA user exit

0010 DEFINE EXIT LOCAL- DATA

0020 LOCAL

0030 01 #CI TY- PROVI NCE(A50)

0040 01 NCST- CUSTOVER VI EW OF NCST- CUSTOMVER

0050 02 CUSTQOVER- NUMBER
0060 02 BUSI NESS- NAME
0070 02 PHONE- NUMBER
0080 02 SHI PPI NG- ADDRESS
0090 03 S- STREET

0100 03 S-ATY

0110 03 S- PROVI NCE
0120 03 S- POSTAL- CODE
0130 02 CONTACT

0140 02 CREDI T- RATI NG
0150 02 CREDIT-LIM T

0160 END-EXI T LOCAL- DATA

-322 -

User Exits for the Natural Construct Models

Example of user exit code for the Browse-Select model

0010 DEFI NE EXI T LOCAL- DATA
0020 01 NCSTDB2- CUSTOVER- PROGRAM VI EW VI EW OF NCSTDB2- CUSTOVER
0030 02 CUSTOMER NUMBER
0040 02 BUSI NESS_NANE
0050 02 PHONE_NUMBER

0060 02 M STREET

0070 02 M CITY

0075 02 N@/ Cl TY

0080 02 REDEFINE N@ Cl TY
0090 03 FI LLER- 90(A1)
0100 03 N#M Cl TY(L)
0110 02 M PROVI NCE

0120 02 M POSTAL CODE
0130 02 S_STREET

0140 02 S CITY

0150 02 S_PROVI NCE

0160 02 S_POSTAL CODE
0170 02 CONTACT

0180 02 PROVI NCE

0190 02 M CITY

0200 02 N@/ Cl TY

0210 02 REDEFINE N@ Cl TY
0220 03 FI LLER- 90(A1)
0230 03 N#M Cl TY(L)
0240 02 M PROVI NCE

0250 02 M POSTAL CODE
0260 02 S_STREET

0270 02 S CITY

0280 02 S_PROVI NCE

0290 02 S_POSTAL CODE
0300 02 CONTACT

0310 02 CREDI T_RATI NG
0320 02 CREDIT LIMT

0330 02 DI SCOUNT PERCENTAG
0340 02 CUSTOMER WAREHOUSE
0350 02 LOG COUNTER

0360 END-EXI T LOCAL- DATA

-323 -

Natural Construct Administration and Modeling User’s Manual

MISCELLANEOUS-SUBROUTINES

This user exit generates the framework for any additional subroutines used by a
modify subprogram.

Example of code generated by the MISCELLANEOUS-SUBROUTINES user exit

DEFI NE EXIT M SCELLANEQUS- SUBROUTI NES
* *

EEE R R I I R R R R R R R S O

DEFI NE SUBROUTI NE subr outi ne- nane

EEE R R R R I I O R R R O R R S O

* *

ESCAPE ROUTI NE | MVEDI ATE
END- SUBROUTI NE /* subr outi ne- nane
END- EXI T M SCELLANEQUS- SUBRCOUTI NES

MISCELLANEOUS-VARIABLES

This user exit generates code to write the prompt and field values to Predict. To
generate the correct code, translation LDAs must adhere to the following naming

standards:

Field Name Prompt
#PDA-GEN-PROGRAM CUMNMAL #GEN-PROGRAM
#PDAX-TITLE CUMNMAL#TITLE

- 324 -

User Exits for the Natural Construct Models

Example of code generated by the MISCELLANEOUS-VARIABLES user exit

0010 DEFINE EXIT M SCELLANEQUS- VARI ABLES

0020 EE R R O R R R R S R R R R

0030 DEFI NE SUBRCUTI NE M SCELLANEQUS

0040 LR R O R R S R R R

0050 *

0060 WRI TE(SRC) NOTI TLE 20T CU - DOCL. #M SC- SPECI FI CATI ONS

0070 WRI TE(SRC) NOTI TLE CU- - PDA. #PDA- UNDERSCORE- LI NE (AL=70)
0080 WRI TE(SRC) NOTITLE '

0090 END- SUBROUTI NE /* M SCELLANEOUS

0100 END-EXIT

PARAMETER-DATA

This user exit generates the framework to process any additional parameters used
in conjunction with other programs.

Example of code generated in the PARAMETER-DATA user exit

DEFI NE EXI T PARAMETER- DATA

** PARAMETER USI NG PDAnane

** PARAMETER

** 01 #Additional -paraneterl
** 01 #Additional -paraneter2
END- EXI T PARAMETER- DATA

PF-KEYS

This user exit documents information about PF-keys supported by a generated sub-
program. To document information about PF-keys, mark this exit and press Enter.
A window is displayed, in which you can specify the supported PF-keys. Descrip-
tions of the specified keys are added to Predict.

—-325-

Natural Construct Administration and Modeling User’s Manual

Example of code generated by the PF-KEYS user exit

0090 * Transl ate pfkey functions

0100 PERFORM GET- CDKEYFL- TEXT

0110 *

0120 * Wite pfkey names and functions

0130 PRI NT(SRC) NOTITLE/ 20T CU - DOCL. #PFKEY- SUPPORT
0140 [

0150 / 3T CU--DOCL. #PFKEY 14T CU- - DOCL. #FUNCTI ON
0160 / 3T CU - PDA. #PDA- UNDERSCORE- LI NE (AL=10)

0170 CU- - PDA. #PDA- UNDERSCORE- LI NE (AL=60)
0180 / 3T CDKEYLDA. #KEY- NAME(2)
0190 14T CDKEYFL. #KEY- FUNCTI ON(2)

0200 END- SUBROUTI NE / * PF- KEYS
0210 END-EXIT
0220 DEFI NE EXIT PF-KEYS

0230 R R R S R O R R S R R O R

0240 DEFI NE SUBRQUTI NE PF- KEYS

0250 EE R R RS E SRS EEEEEEEEEEEEEEEEEREEREEEESEEEEEEEESEREREEEEEEEE RS RS EEEEE]
0260 *

0270 * Transl ate pfkey nanes

0280 | NCLUDE CU- - DOC

0290 *

0300 * Transl ate pfkey functions

0310 PERFORM GET- CDKEYFL- TEXT

0320 *

0330 * Wite pfkey names and functions

0340 PRINT(SRC) NOTITLE/ 20T CU - DOCL. #PFKEY- SUPPORT
0350 [

0360 / 3T CU--DOCL. #PFKEY 14T CU- - DOCL. #FUNCTI ON
0370 / 3T CU - PDA. #PDA- UNDERSCORE- LI NE (AL=10)

0380 CU- - PDA. #PDA- UNDERSCORE- LI NE (AL=60)
0390 / 3T CDKEYLDA. #KEY- NAME(3)
0400 14T CDKEYFL. #KEY- FUNCTI ON(3)

0410 END- SUBROUTI NE / * PF- KEYS
0420 END-EXIT

- 326 -

User Exits for the Natural Construct Models

PROCESS-SPECIAL-KEYS

This user exit is required for the CST-Modify-332 model if the generated modify
subprogram supports special PF-keys (all keys other than Enter and the help, re-
turn, quit, right, and left PF-keys).

Define the special PF-keys on the Maintain Subprograms panel. For a description

of this panel, see Maintain Subprograms Function, page 61. After defining the

keys and generating the model, this user exit contains code you can use as a start-
ing point for processing the keys.

Example of code generated by the PROCESS-SPECIAL-KEYS user exit

DEFI NE EXI T PROCESS- SPECI AL- KEYS
ASSI CN #PF- KEY = *PF- KEY
DECI DE ON FI RST VALUE OF *PF- KEY
VALUE #PF-*0039
/ *
/* Perform *0039 processing
ASSI GN CSASTD. MsG = ' *0039 processi ng conpl eted successful |y’
ESCAPE TOP
NONE VALUE
| F *PF-KEY NE ' ENTR
REI NPUT 'Invalid key: 1l:entered', #PF- KEY
END- | F
END- DECI DE
END- EXI T PROCESS- SPECI AL- KEYS

- 327 -

Natural Construct Administration and Modeling User’s Manual

PROVIDE-DEFAULT-VALUES

This user exit provides a list of default values for model parameters. If desired, it
can also supply values for other parameters you want to initialize. Natural Con-
struct provides default values for the #PDAX variables in the model PDA.

Note: To specify default values for additional specification parameters in your
model PDA, regenerate this user exit. This adds the new variables but
does not modify the code from the previous generation.

Example of code generated by the PROVIDE-DEFAULT-VALUES user exit

DEFI NE EXI T PROVI DE- DEFAULT- VALUES
ASS| GN CXMNPDA. #PDAX- DESCS(*) = ' '
ASSI GN CXMNPDA. #PDAX- USE- MSG- NR = FALSE
ASSI GN CXMN\PDA. #PDAX- PDA = ' '
ASSI GN CXMN\PDA. #PDAX- FI LE- NAME = ' '
ASSI GN CXMNPDA. #PDAX- FI ELD- NAME = " '
ASSI GN CXMN\PDA. #PDAX- MAP- NAME = ' '
ASSI GN CXMNPDA. #PDAX- LI NES- PER- SCREEN = 0
ASSI GN CXMNPDA. #PDAX- W NDOW BASE = ' '
ASSI GN CXMNPDA. #PDAX- W NDOW BASE- LI NE =
ASSI GN CXMNPDA. #PDAX- W NDOW BASE- COLUWN
ASSI GN CXMNPDA. #PDAX- W NDOW SI ZE = ' '
ASSI GN CXMNPDA. #PDAX- W NDOW LI NE- LENGTH = 0
ASSI GN CXMNPDA. #PDAX- W NDOW COLUMN- LENGTH = 0
ASSI GN CXMNPDA. #PDAX- W NDOW FRAME = FALSE
END- EXI T PROVI DE- DEFAULT- VALUES

1o
o

- 328 -

User Exits for the Natural Construct Models

SAVE-PARAMETERS

This user exit is required for the CST-Save model. It generates a WRITE statement
for each specification parameter (#PDAX variable) in the model PDA. Elements of
array variables are written individually, including the number of array occurrenc-
es. The WRITE statement has the following format:

WRI TE(SRC) NOTI TLE ' =' #PDAX-vari abl e- nane
Natural Construct transforms these lines as follows:
**SAG vari abl e nane: variable contents

and writes them at the beginning of Natural Construct-generated modules.

Note: Ifyou add specification parameters to the model PDA, regenerate this
user exit to generate the WRITE statements for the new parameters. Re-
generation adds the new variables but does not modify code from the pre-
vious generation.

-329 -

Natural Construct Administration and Modeling User’s Manual

Example of code generated by the SAVE-PARAMETERS user exit

DEFI NE EXI T SAVE- PARAVETERS
FOR #1 =1 TO 4
| F #PDAX- DESCS(#1) NE ' ' THEN
COVPRESS ' #PDAX- DESCS(' #| '):' |NTO #TEXT
LEAVI NG NO
PRI NT(SRC) NOTI TLE #TEXT #PDAX- DESCS(#I)
END- | F
END- FOR
WRI TE(SRC) NOTI TLE '=' #PDAX- USE- MSG- NR
"= #PDAX- PDA
#PDAX- FI LE- NAVE
#PDAX- FI ELD- NAVE
#PDAX- MAP- NAVE
#PDAX- LI NES- PER- SCREEN
#PDAX- W NDOW BASE
#PDAX- W NDOW BASE- LI NE
#PDAX- W NDOW BASE- COLUWN
#PDAX- W NDOW S| ZE
#PDAX- W NDOW LI NE- LENGTH
#PDAX- W NDOW COLUWN- LENGTH
| "= #PDAX- W NDOW FRANE
END- EXI T SAVE- PARAVETERS

e e e

SET-CONDITION-CODES

This user exit is required for the CST-Pregen model. It generates initialization
statements for all conditions (#PDAC variables) in the model PDA. You can modify
the generated code as desired.

A condition is set to true when a variable corresponding to the condition exists in
the model PDA and has a non-null value. The variables and conditions are linked
through their names. For example, the #PDAX-name variable corresponds to the

#PDAC-name or #PDAC-name-SPECIFIED condition.

—-330-

User Exits for the Natural Construct Models

For example, if the model PDA contains:
#PDAX-USE-MSG-NR(L) variable
#PDAC-USE-MSG-NR(L) condition

this user exit generates the following code:

WHEN #PDAX- USE- M5SG- NR NE FALSE
#PDAC- USE- MSG- NR = TRUE

If the model PDA contains:
#PDAX-GDA(AS8) variable
#PDAC-GDA-SPECIFIED(L) condition

this user exit generates the following code:

WHEN #PDAX- GDA NE ' '
#PDAC- GDA- SPECI FI ED = TRUE

The WHEN clause is blank for all conditions that have no corresponding variable
in the model PDA.

Code for the conditions currently existing in this user exit is not generated. When
you regenerate this user exit, only the code for new conditions (that were added to
the model PDA after the previous generation) is added.

Example of code generated by the SET-CONDI TION-CODES user exit

DEFI NE EXIT SET- CONDI TI ON- CCDES
*

* Set conditions in PDA.
DECI DE FOR EVERY CONDI TI ON
WHEN #PDAX- USE- MSG- NR NE FALSE
ASSI GN #PDAC- USE- MSG- NR = TRUE
WHEN #PDAX- FI LE- NAME NE ' '
ASSI GN #PDAC- FI LE- NAMVE- SPECI FI ED = TRUE
WHEN #PDAX- FI ELD- NAME NE '
ASSI GN #PDAC- FI ELD- NAME- SPECI FI ED = TRUE
WHEN #PDAX- PDA NE ' '
ASSI GN #PDAC- PDA- SPECI FI ED = TRUE
WHEN NONE
| GNORE
END- DECI DE
END- EXI T

-331-

Natural Construct Administration and Modeling User’s Manual

START-OF-PROGRAM

The code in this user exit is executed once at the beginning of the generated sub-
program after all standard initial values are assigned. You can use this exit to do
any initial setup required (such as initializing input values from globals, setting
window or page sizes, or capturing security information for a restricted data area).

SUBSTITUTION-VALUES

This user exit is used by the CST-Postgen model, which generates the post-gener-
ation subprogram for a model. The post-generation subprogram generates STACK
statements for substitution variables in the model PDA. To generate STACK state-
ments for any substitution variables that are not in the model PDA, select the
SUBSTITUTION-VALUES or ADDITIONAL-SUBSTITUTION-VALUES user
exit (see below for a comparison).

If you select this user exit, STACK statements for all substitution variables are
generated in this user exit — those in the model PDA, as well as any additional
variables. You can modify these variables as desired.

Which user exit you select depends on whether you want the model to stack substi-
tution parameters in the code frame or in a user exit, thereby overriding the default
substitution parameter handling.

¢ Ifyouuse the ADDITIONAL-SUBSTITUTION-VALUES user exit (or no user exit),
the model will automatically stack any model PDA variables that match the
&SUBSTITUTION values in the code frame. For example:

STACK TOP DATA FORVATTED ' &PRI ME-FI LE' #PDAX- PRI ME- FI LE

¢ If you use this user exit, code all substitution values in the user exit since default
code will not be generated.

Note: Use either the SUBSTITUTION-VALUES user exit or the ADDITIONAL-
SUBSTITUTION-VALUES user exit, but not both.

-332-

User Exits for the Natural Construct Models

VALIDATE-DATA

The code in this user exit performs edit checks on each parameter on a mainte-
nance map. Specify the map name in the Map name field on the Standard
Parameters panel.

The following sections contain examples of user exit code for the CST-Modify model
and CST-Modify-332 model. The CST-Modify model supports dynamic multilin-
gual specification panels and messages using SYSERR references and substitution
variables. The code generated by this user exit contains SYSERR numbers and
substitution values.

Example user exit code generated for the CST-M odify model

0010 DEFI NE EXI T VALI DATE- DATA
0020 DECI DE FOR EVERY CONDI TI ON

0030 WHEN #HEADERL = ' '

0040 ASSI GN CNAMSG. MSG DATA(1) = #HEADERL
0050 I NCLUDE CU - RMSG ' 2001

0060 "trr1::2::3:is required '

0070 ' #HEADERL'

0080 WHEN #HEADER2 = ' '

0090 ASSI GN CNAMSG. MSG DATA(1) = #HEADER2
0100 I NCLUDE CU - RMSG ' 2001

0110 "trr1::2::3:is required '

0120 ' #HEADER2'

0130 WHEN #PDA- GEN- PROGRAM = ' '

0140 ASSI GN CNAMSG. MSG- DATA(1) = #GEN- PROGRAM
0150 I NCLUDE CU - RMSG ' 2001

0160 "trr1::02::3:is required !

0170 ' #PDA- GEN- PROGRAM

0180 WHEN #PDA- SYSTEM = ' '

0190 ASSI GN CNAMSG. MSG DATA(1) = #SYSTEM
0200 I NCLUDE CU - RMSG ' 2001

0210 "trr1::2::3is required !

0220 ' #PDA- SYSTEM

0230 WHEN #PDA-TI TLE = ' '

0240 ASSI GN CNAMSG. MSG- DATA(1) = #TI TLE
0250 I NCLUDE CU - RMSG ' 2001

0260 "trr1::2::3:is required !

0270 ' #PDA- TI TLE'

—-333-

Natural Construct Administration and Modeling User’s Manual

0280 VWHEN CUBAPDA. #PDAX- DESCS = ' '

0290 ASSI GN CNAMSG. MSG- DATA(1) = #DESCS
0300 I NCLUDE CU- - RVSG ' 2001'

0310 "ttr10:2::3is required !

0320 ' CUBAPDA. #PDAX- DESCS'

0330 VWHEN CUBAPDA. #PDAX- GDA = ' '

0340 ASSI GN CNAMSG. MSG- DATA(1) = #GDA
0350 I NCLUDE CU- - RVSG ' 2001'

0360 "ttr10:2::3is required !

0370 " CUBAPDA. #PDAX- GDA'

0380 WHEN CUBAPDA. #PDAX- GDA- BLOCK = ' '
0390 ASSI GN CNAMSG MSG- DATA(1) = #GDA- BLOCK
0400 I NCLUDE CU- - RVSG ' 2001'

0410 'ttr10:2::3is required !

0420 " CUBAPDA. #PDAX- GDA- BLOCK'

0430 WHEN CUBAMAL. #DESCRI PTION = ' '

0440 ASSI GN CNAMSG. MSG- DATA(1) = #DESCRI PTI ON
0450 I NCLUDE CU- - RVSG ' 2001'

0460 "trr10:2::3is required !

0470 ' CUBAVAL. #DESCRI PTI ON

0480 WHEN CUBAMAL. #GDA = ' '

0490 ASSI GN CNAMSG. MSG- DATA(1) = #GDA
0500 I NCLUDE CU- - RMSG ' 2001'

0510 "ttr10:2::3is required !

0520 ' CUBAVAL. #GDA'

0530 WHEN CUBAMAL. #GDA- BLOCK = ' '

0540 ASSI GN CNAMSG. MSG- DATA(1) = #GDA- BLOCK
0550 I NCLUDE CU- - RVSG ' 2001'

0560 "ttr10:2::3is required !

0570 ' CUBAVAL. #GDA- BLOCK'

0580 WHEN CUBAMAL. #GEN- PROGRAM = ' '

0590 ASSI GN CNAMSG. MSG- DATA(1) = #GEN- PROGRAM
0600 I NCLUDE CU- - RVSG ' 2001'

0610 "ttr10:2::3is required !

0620 ' CUBAVAL. #GEN- PROGRAM

0630 WHEN CUBAMAL. #SYSTEM = ' '

0640 ASSI GN CNAMSG. MSG- DATA(1) = #SYSTEM
0650 I NCLUDE CU- - RVSG ' 2001'

0660 "trr10:2::3is required !

0670 ' CUBAMAL. #SYSTEM

0680 WHEN CUBAMAL. #TI TLE = ' '

0690 ASSI GN CNAMSG. MSG- DATA(1) = #TI TLE
0700 I NCLUDE CU- - RVSG ' 2001'

0710 "ttr10:2::3is required !

0720 " CUBAMAL. #TI TLE'

0730 END-EXIT

- 334 -

User Exits for the Natural Construct Models

Example user exit code generated for the CST-Modify-332 model

DEFI NE EXI T VALI DATE- DATA
*

* Edit checks on nap paraneters.
DECI DE FOR EVERY CONDI TI ON
WHEN #HEADER1 = ' '
REI NPUT ' Header 1 is required'
MARK *#HEADERL ALARM
WHEN #HEADER2 = ' '
REI NPUT ' Header2 is required'
MARK *#HEADER2 ALARM
WHEN CDDI ALDA. #PROGRAM = ' '
REI NPUT ' Program i s required'
MARK * CDDI ALDA. #PROGRAM ALARM
WHEN CDGETDCA. #DI RECT- COWMAND = ' '
REI NPUT ' Di rect Command is required
MARK * CDGETDCA. #DI RECT- COWAND ALARM
VWHEN NONE | GNORE
END- DECI DE
END- EXI T VALI DATE- DATA

The basic structure of this user exit is supplied in the above format. You can edit

the supplied code as required.

Note: Ifyou add specification parameters to the model PDA, you can generate

sample statements for the new parameters by regenerating this user exit.
Regeneration adds the new variables but does not modify code from the
previous generation.

—-335-

Natural Construct Administration and Modeling User’s Manual

- 336 -

MODIFYING THE SUPPLIED MODELS

This chapter describes how to modify the models supplied by Natural Construct. In

most cases, the existing model can be customized by modifying the code frames as-
sociated with the model or the copycode members used in the generated modules.

In some cases, the generated code may need to be modified by the subprograms in
the model code frames (identified by the CU prefix).

The following topics are covered:
¢ Introduction, page 338
¢ Modify the Supplied Models, page 339
¢« Example of Modifying a Model, page 342
* Using Steplibs to Modify Models, page 345

-337 -

Natural Construct Administration and Modeling User’s Manual

Introduction

The source code for all CU-prefixed subprograms is supplied with Natural Con-
struct. To reduce dependencies between Predict and the Natural Construct models,
all models use external subprograms to access the Predict data dictionary (they do
not access Predict directly).

Do not modify the supplied model subprograms, as changes to these subprograms
may have to be reapplied with each new release of Natural Construct. If you want
to modify supplied subprograms, copy the subprogram and use a CX prefix (rather
than the CU prefix) to name it.

Additionally, do not modify the supplied code frames. All supplied code frames end
with a suffix value of 9 (for example, CMNA9). To create a custom code frame, copy
and rename the supplied code frame with a lower suffix value (for example,
CMNAY7) and modify the new code frame. Natural Construct searches for and uses
the code frame with the lowest suffix value when the program is generated. Docu-
ment all changes so they can be reapplied to subsequent versions of Natural
Construct. For more information, see Maintain Models Function, page 48.

Note: Ifthe changes are confined to model subprograms or copycode members
used in modules generated by the model, use the multiple steplib feature
to customize the model. For more information, see Using Steplibs to
Modify Models, page 345.

- 338 -

Modifying the Supplied Models

Modify the Supplied Models

Typically, the Natural Construct administrator modifies generation models. Before
a modified model is available for general use, it should be thoroughly tested.

The following sections explain how to modify the supplied model code frames, sub-
programs, and copycode, as well as how to modify the external data areas and
subprograms used by the generation models.

Modifying Code Frames

Do not modify the supplied code frames. Instead, copy the code frames you want to
customize and modify these. Keep the original code frames so they can be referred
to if problems arise. Changes to code frames take effect immediately after the code
frame is saved.

Note: Document all modifications to the code frames so changes can be reap-
plied to new versions of Natural Construct.

» To modify a code frame:

1 Copy the code frame and use an X prefix to name the copy.
For example, the CFEXAM9 code frame becomes XFEXAMO.

Note: Ratherthan copying and renaming individual model components, you can
create standard, development, and production versions of all Natural
Construct system files. Use the CSFUNLD and CSFLOAD utilities to
move code frames between files.

2 Copy the model that uses the modified code frame and give the copy a different
name.
For example, the Menu model becomes Menu2.

3 Invoke the model copy to test changes to your code frame.
For example, invoke the Menu2 model. You can test the modified code frame
without interrupting the use of the Menu model.

—-339 -

Natural Construct Administration and Modeling User’s Manual

4 Change the X prefix back to a C and change the 9 in the last position of the code
frame name to a lesser number (from 1 to 7).
For example, the XFEXAMS9 code frame becomes CFEXAMY7. Natural Construct
always uses the code frame ending with the lesser number.

Note: Do not use the number 8 in the last position of the code frame name. Num-
ber 8 is reserved for future changes to the supplied code frames (should
they be issued). For more information about modifying code frames, see
Parameters Supplied by Nested Code Frames, page 129.

Modifying the Model Subprograms

Because the production copies of the model subprograms are invoked from the
SYSLIBS library, you can modify and test the model subprograms within the SY-
SCST library without affecting existing users of the model.

To invoke Natural Construct from the SYSCST library (instead of the SYSTEM li-
brary), use the CSTG command (not NCSTG).
» To modify a supplied model subprogram (prefixed by CU):

Copy the subprogram and change the CU prefix to CX.
Copy the corresponding model and refer the copy to the new CX subprogram.

Note: Usethe CSUTEST utility to test the model subprograms individually. For
more information, see Testing the Model Subprograms, page 178.

3 After testing the model subprograms in the SYSCST library, copy the modified
modules to the SYSLIBS library in the FNAT system file.
If you change the condition codes in the model PDA, copy the object code for the
model PDA into the SYSLIBS library as well.

—340 -

Modifying the Supplied Models

Note: IfNatural Construct is invoked from a steplib, you do not have to rename
the supplied subprograms during modification and testing. Instead, copy
the subprogram to a test library or other higher level steplib. Once tested,
you can copy the modules to the steplib reserved by all development li-
braries for modifying the supplied modules.

Modifying Copycode (CC*) and External Data Areas and
Subprograms (CD*)

If you modify any of the CC or CD-prefixed supplied modules and want to apply the
changes to programs generated in all libraries, copy the modified modules to the
SYSTEM library. If the changes only apply to one application, copy the modified
modules to the corresponding application library.

If you modify the CC or CD-prefixed modules and assign a new name to the modi-
fied modules, reference the new name in the Natural Construct standard models.
For example, if you modify CCSTDKEY and name the new module MYSTDKEY,
refer the Natural Construct standard models to MYSTDKEY instead of
CCSTDKEY.

The supplied CSXCNAME user exit subprogram in the SYSCSTX library allows
users to substitute their own symbols or names for the default values generated
into a Natural Construct object (CC* copycode and CD* routines, for example). If
this subprogram exists in the SYSLIBS library, it is invoked immediately before
the post-generate subprogram for the current model.

The main function of the CSXCNAME subprogram is to place a list of substitution
symbols and values on the Natural stack. For example, if you enter the following
code in CSXCNAME:

STACK TOP DATA FORMATTED ' CCSTDKEY' ' MYSTDKEY'
Natural Construct scans for “CCSTDKEY” and replaces it with “MYSTDKEY”.

—-341 -

Natural Construct Administration and Modeling User’s Manual

Example of Modifying a Model

This section describes how to modify the maintenance model (Maint). The modifi-
cations include the option to generate depth scrolling capabilities, in addition to the
current up-down and left-right scrolling. This capability allows a user to scroll a
three-dimensional array using the PF4 and PF5 keys. Additionally, the user can
name these keys on the second specification panel.

» To implement this feature:

1 Determine what modifications are required by manually applying the changes to a
maintenance program generated by the model.
The modified program is the prototype. To identify which code frames, PDA, and
subprograms to modify, invoke the Maintain Models panel and display information
for the Maint model.

2 Modify the parameter data area (PDA) as follows:
— Copy the PDA and change the “CU” prefix to “CX”.

— Add a #PDAC-DEPTH-KEYS logical variable to the end of the redefinition of
#PDA-CONDITION-CODES.

— Add a #PDAX-DEPTH-KEYS logical variable to the end of the redefinition of
#PDA-USER-AREA.

— Add two A5 fields (#PDAX-DEPTH-IN and #PDAX-DEPTH-OUT, for example).
— Stow the modified PDA in the SYSCST library.

Note: Ifyou are executing the steplib version of Natural Construct, move the
model PDA to a lower level steplib and make the changes without renam-
ing the object.

3 Modify the second maintenance map and subprogram as follows:

Tip: The subprogram name is displayed in the top left corner of a panel; the map
name is displayed in the top right corner of a panel.

— Copy the current versions and change the “CU” prefix in the names to “CX”.

—342 -

Modifying the Supplied Models

Add the #PDAX-DEPTH-KEYS, #PDAX-DEPTH-IN, and #PDAX-DEPTH-OUT
fields to the new map. For example:

I ncl ude Depth Keys: _ (Nared:

Stow the new map and subprogram.

Note: Validation edits (ensuring the keys are named if they are included, for ex-

ample) can be initiated on the map or within the invoking subprogram.

Modify the code frames as follows:

Identify the code frames to modify.

The easiest way to do this is by marking the Options field when generating a
program using the Maint model. When the Status window is displayed, mark
the Embedded statements option. The generated program will then contain
comments showing where each code block originated.

Copy the code frames and change the “C” prefixes to “X”.

Modify the X code frames in the DEPTH-KEYS condition.
You can name the keys using substitution parameters assigned in the post-gen-
erate subprogram. For example:

DEPTH- KEYS1
SET KEY CDKEYLDA. #DEPTH- | N- KEY NAMED “ &DEPTH- I N "
SET KEY CDKEYLDA. #DEPTH- QUT- KEY NAMED *“ &DEPTH- QUT' "

Save the code frame.

Make a test copy of the model and have the test model refer to the X copies.

Note: Add the new PF-keys to CDKEYLDA. For information, see Adding a

New PF-Key, page 157, in Natural Construct Generation User’s Manual.

Modify the model subprograms as follows:

Make copies using an “X” prefix (or use a steplib).
Modify the clear subprogram to initialize the new parameters. For example:

RESET #PDAX- DEPTH- KEYS
ASSI GN #PDAX- DEPTH-IN = ' front'
ASSI GN #PDAX- DEPTH- OUT = ' back'

—343 -

Natural Construct Administration and Modeling User’s Manual

— Modify the pre-generation subprogram to assign the #PDAC-DEPTH-KEYS
logical condition variable to TRUE if the user marks the #PDAX-DEPTH-KEYS
field.

— Modify the post-generation subprogram to assign the names of the depth keys.
For example:

| F #PDAC- DEPTH- KEYS THEN
STACK TOP DATA FORVATTED ' &DEPTH-I N #PDAX- DEPTH- | N
STACK TOP DATA FORVATTED ' &DEPTH- QUT' #PDAX- DEPTH- QUT
END- 1 F

— Modify the save subprogram to write the new parameters. For example:

| F #PDAC- DEPTH KEYS THEN
WRI TE(SRC) NOTI TLE '
WRI TE(SRC) NOTI TLE ' =
WRI TE(SRC) NOTI TLE ' =
END- 1 F

— Modify the read subprogram to accept the new parameters. For example:

#PDAX- DEPTH- KEYS
#PDAX- DEPTH- I N
#PDAX- DEPTH- QUT

WHEN #LI NE = ' DEPTH KEYS:'
| NPUT #PDAX- DEPTH- KEYS
WHEN #LI NE = ' DEPTH I N:'
| NPUT #PDAX- DEPTH- I N
WHEN #LI NE = ' DEPTH OUT:'
| NPUT #PDAX- DEPTH QUT

Test the modified model in the SYSCST library using the CSTG command. You can
also test individual components of the model using the CSUTEST program or
debug the model using the trace options available through the Generation main
menu (for more information, see Testing the Model Subprograms, page 178).

Migrate the modified model as follows:

— Copy the modules for the modified subprograms and PDA from the SYSCST li-
brary to the SYSLIBS library.

— Modify the model definition record (Maintain Models panel) to refer to the mod-
ified code frame.

Document all modifications to the model in case they have to be applied to a future
version of Natural Construct.

—344 -

Modifying the Supplied Models

Using Steplibs to Modify Models

Using Natural Security, you can define up to eight steplibs for each Natural Con-
struct library. The searching order is the current library (*LIBRARY), the first
steplib (if present), the second steplib (if present), ..., the eighth steplib (if present),
and then the SYSTEM library.

If you store the executing Natural Construct modules in a steplib, you can store
your modified model subprograms or copycode in a higher level steplib, effectively
overriding any supplied Natural Construct modules with the same names and
types. In this way, users access your modified models and the supplied models re-
main untouched.

When you invoke Natural Construct from a steplib, use the CSTG command (as in
the SYSCST library) — not the NCSTG command. The NCSTG command always
invokes the copy of Natural Construct that is stored in the SYSLIBS library and
bypasses the steplibs. To use the NCSTG command, you can write an NCSTG pro
gram to fetch CSTG in the application library.

Because SYSCST is available in a steplib, this method can regulate access to the
Administration subsystem. As the Natural Construct administrator, you can use
the security routines in the SYSCSTX library to control access to this subsystem.

The following example describes how to use the steplib method to eliminate direct
command processing in Natural Construct-generated programs. Direct command
processing is triggered by the #PDAX-DIRECT-COMMAND-PROCESS variable
on the CU—MAO map. You can remove the field that contains this variable from
the CU—MAO map and move the modified map into a steplib at a higher level than
the SYSCST library.

» To use steplibs, assuming that APPL is the application library:

1 Define the steplibs to APPL in the following order: NODIRECT, SYSCST, and
SYSTEM from Natural Security. NODIRECT is a new library and SYSCST and
SYSTEM are steplibs of this new library.

Copy the CU—MAO map from the SYSCST library to the NODIRECT library.

Edit the CU—MAO map in the NODIRECT library.
Delete the text “Mark to include Direct Command Processing” and define the field
containing the #PDAX-DIRECT-COMMAND-PROCESS variable as non-display.

4 Stow the modified CU—MAO map.

—345 -

Natural Construct Administration and Modeling User’s Manual

5 Ifyou deleted the field that contains the #PDAX-DIRECT-COMMAND-PROCESS
variable, copy all the modules that use the CU—MAO map in the SYSCST library
to the NODIRECT library and catalog them. Because SYSCST and SYSTEM are
steplibs of NODIRECT, these modules can be cataloged in the NODIRECT library.

Note: Ifyou use the steplib version of Natural Construct for batch regeneration,
use the CSTBGEN command instead of the NCSTBGEN command.

Invoking Natural Construct From a Steplib

To invoke Natural Construct from a steplib, define the SYSCST and SYSLIBS li-
braries as steplibs of all development libraries requiring Natural Construct. You
should also define a higher level steplib where modules can be stored that override
the supplied objects. This steplib should also contain a module called NCSTG,
which is coded as follows:

FETCH ' CSTG
END

If extensive code frame changes are required, consider installing a second copy of
the Natural Construct system file. You can then make changes to code frames di-
rectly, without having to make a copy of individual frames and/or modules. You can
use the compare facilities supplied with Natural Construct to compare modified
models and code frames with the originals.

For more information about the compare facilities, see Compare Menu Func-
tion, page 66.

— 346 -

EXTERNAL OBJECTS

This chapter describes the programs, subprograms, and helproutines that help
simplify and standardize the model creation process. These utilities can be invoked
by the supplied models or by user-written models.

Note: The source code for external objects is not supplied.

The following topics are covered:
¢ Introduction, page 348
* Natural-Related Subprograms (CNU*), page 355
¢ Natural-Related Helproutines (CNH¥*), page 375
* Natural Construct Generation Utility Subprograms (CSU¥*), page 378
¢ Predict-Related Subprograms (CPU*), page 441
¢ Predict-Related Helproutines (CPH¥), page 472

¢ Natural Construct General Purpose Generation Subprograms (CU--%),
page 476

— 347 -

Natural Construct Administration and Modeling User’s Manual

Introduction

All model subprograms use external parameter data areas (PDAs) stored in the
SYSCST library. The source for the PDAs is provided and contains details about
each parameter. For example, some of the listings for the CPAEL PDA are:

Par anet er CPAEL Li brary SAG DBID 18 FNR 4
Conmmand >+
I T L Nane F Leng I ndex/ I nit/EM Name/ Comment
TOP = - m e e oo
1 CPAEL
2 I NPUTS
3 Fl LE- NAME A 32 /* File Nane.
3 FI ELD- NAME A 32 /* Field name to be found in the
3 #SI MPLE- QUTPUTS- ONLY L /* True if interested in
* /* #Fl ELD- FOUND only
* /* given file
2 | NPUT- QUTPUTS
3 FI LE- CODE P 8 /* If this code is known,
* /* NSC checks are avoi ded.
3 DDM PREFI X A 16 /* Field prefix on DDM
* /* this will be set if correct
* /* FILE-CODE is not provided.
2 S| MPLE- QUTPUTS
3 #FI ELD- FOUND L /* True if field found on file
3 FI ELD- | S- REDEFI NED L /* The field is redefined.
--- S70 L1
CPAEL PDA

CPAEL contains a level 1 structure called CPAEL. Depending on the type of pa-
rameter, the remaining parameters are grouped into the following structures:
INPUTS, INPUT-OUTPUTS, and OUTPUTS. This layout is the same for all PDAs
used by the supplied subprograms.

Note: Be careful when modifying fields in the INPUT-OUTPUTS structure;
these fields may retain information across multiple calls.

You can define the PDAs as local data areas (LDAs) within the model subprograms
that invoke the utilities. CPAEL is the PDA corresponding to the CPUEL subpro-
gram utility, which returns information about a field in Predict.

— 348 —

External Objects

Example of a model subprogram requiring field information from Predict

DEFI NE DATA PARAMETER
PARAVETER

LOCAL USI NG CPAEL
LOCAL USI NG CSASTD

END- DEFI NE

A.SSI GN CPAEL. FI LE- NAME = #PDAX- FI LE- NAVE
ASSI GN CPAEL. FI ELD- NAME = #PDAX- FI ELD- NAMVE
CALLNAT ' CPUEL' CPAEL CSASTD

*

*Check out puts of CPUEL

END
This chapter provides a brief description of the supplied program, subprogram, and

helproutine utilities. For examples of how to invoke the utilities, see the source
code for the supplied model subprograms in the SYSCST library (prefixed by CU).

Driver programs for many of the supplied model programs and subprograms are
included on the Natural Construct tape (prefixed by CTE). These driver programs
are also available through the Drivers menu option on the Administration main
menu. If a driver program is available, its location is listed under Driver Menu Op-
tion for the program or subprogram.

For information about invoking the driver programs, see Drivers Menu Func-
tion, page 79.

— 349 -

Natural Construct Administration and Modeling User’s Manual

Object Categories

The supplied objects are divided into three categories, based on the type of infor-
mation they access. Each category is identified by its prefix as follows:

Prefix Object Category

CN* Identifies objects that return or generate data based on
information in the Natural system files.

CP* Identifies objects that return or generate data based on
information in Predict.

CS* Identifies objects that are miscellaneous validation, calculation, or
translation routines. Most of these routines do not access system
file information, but some access Natural Construct system files.

Whenever possible, use the supplied programs, subprograms, and helproutines in-
stead of accessing the system file information directly. This helps protect your
programs from unwanted changes to the internal structure. Natural Construct
maintains the upward compatibility of the supplied programs, subprograms, and
helproutines.

Processing Errors

Many of the supplied subprograms return information through the CSASTD pa-
rameter data area (PDA). You should check the value in the RETURN-CODE field
after each call. If it is not blank, it should be passed back to the generation nucleus
so the user is aware of the problem.

- 350 -

External Objects

Example of a model subprogram that invokes the CPUEL utility

DEFI NE DATA
PARAVETER USI NG CUMYPDA
PARAVETER USI NG CU- - PDA
PARAMETER USI NG CSASTD
LOCAL USI NG CPAEL

END- DEFI NE

CALLNAT ' CPUEL' CPAEL CSASTD

| F CSASTD. RETURN- CODE NE ' ' THEN
ESCAPE ROUTI NE | MVEDI ATE

END- 1 F

Passing Structure Names

To invoke the supplied subprograms, pass only the level 1 structures in the PDA.
This way, if new parameters are added to the utilities in future versions of Natural
Construct, you only have to recatalog your model subprograms to incorporate the
changes.

Restricted Data Areas

Some subprograms have restricted data areas to retain information across multi-
ple calls. The restricted data areas are identified by an R in the third position of
the data area name (CPRELNX, for example).

You do not need to be concerned with the contents of these data areas. Define them
as local data areas within the invoking subprograms and pass them to the subpro-
gram that is invoked.

Note: As with all PDAs, the name of the structure passed to the subprogram al-
ways matches the name of the data area itself.

-351-

Natural Construct Administration and Modeling User’s Manual

Callback Functions

Many of the Construct utility subprograms iterate through system data and for
each record found call a user-supplied routine. For example, CPURLRD is used to
retrieve all relationships related to a particular file. Rather than returning these
relationships to the caller of CPURLRD, the caller must supply the name of a sub-
program that CPURLRD should call for each relationship found.

These routines accept an Al array to allow the caller of the utility to communicate
information to and from the subprogram called by the Construct utility. This data
area is represented by CSAPASS. It is accepted by the utility as a 1:v array so that
the actual size of the data area can be determined by the requirements of the caller.

Subprogram Chaining

When a subprogram performs read logical processing and returns a series of
records, it is sometimes difficult or inefficient for the subprogram to “remember”
where it left off in a previous call. Also, this type of processing can be awkward to
code in the invoking object because it must define looping logic and issue iterative
CALLNATS until a certain end condition is reached.

To avoid these problems, some subprograms do not return the information to the
calling object. Instead, the calling object passes the name of a subprogram that is
invoked for each record encountered. To generate an INPUT statement containing
all fields in a file, for example, you can use the CPUELNX and CPUELRD subpro-
grams. These subprograms are described in the following sections.

No Subprogram Chaining (CPUELNX)

The CPUELNX subprogram can be called iteratively to continually return the next
field in the file until an end-of-file condition is reached. The model subprogram that
generates the INPUT statement must define the looping logic and make iterative
CALLNATS to include each field in the INPUT statement.

-352 -

External Objects

Using Subprogram Chaining (CPUELRD)

The CPUELRD subprogram can be invoked once by your model subprogram
(CUXXGIN1, for example). This subprogram receives the name of a file and the
name of a subprogram to CALLNAT (CUXXGINZ2, for example). It traverses
through the specified file and CALLNATS the subprogram for each field. That sub-
program adds the current field to the INPUT statement generated. For example:

CUXXGIN1

Generates the INPUT
statement for all fields
in a file

Passes file name

CPUELRD

Calls CUXXGIN2 for
each field in the file

Passesfield information

'

CUXXGIN2

Adds onefieldtothe
INPUT statement

Example of Subprogram Chaining

To allow CPUELRD to remember information across iterative calls, a 1K area is
passed to CUXXGINZ2. This area can be redefined into individual fields, such as
current status information, that are required by CUXXGIN2 across multiple calls.
It can also pass additional information between CUXXGIN1 and CUXXGIN2.

- 353 -

Natural Construct Administration and Modeling User’s Manual

Note: For an example of how subprogram chaining is used, see the CUFMGIN1
and CUFMGIN2 programs in the SYSCST library.

—354 -

External Objects

Natural-Related Subprograms (CNU%)

The subprograms described in the following sections retrieve information from the
Natural system files to assist in the generation process. For subprograms that re-
turn information about Natural objects (programs, data areas, etc.), the specified
data area object must exist in the current library or one of its steplibs.

Driver programs for many of the supplied programs and subprograms are available
through the Driver Menu option on the Administration main menu. If a driver pro-
gram is available, its location is listed in the Driver Menu Option section for the
program or subprogram.

For information about invoking the driver programs, see Drivers Menu Func-
tion, page 79.

CNUEL Subprogram

CNUEL Description

What it does Retrieves information about a field in a local data area
(LDA) or parameter data area (PDA).
This subprogram receives the name of a field and data area
(CNAEL.INPUTS) and returns information about the field
(CNAEL.OUTPUTS), such as the structure to which the
field belongs, the field format and type, the level number,
and the starting and ending index for arrays.

PDAs used CNAEL
CSASTD

Files accessed SYSTEM-FUSER

SYSTEM-FNAT

- 355 -

Natural Construct Administration and Modeling User’s Manual

Driver Menu Option

CTEELN
Oct 09

Structure Nane :

View Of Nane...:

Field Found....:

Fi el d Redefi ned:

*Data Area Nane :

xx* Natural Related Subprogranms ***
- Driver for subprogram CNUEL -

Constant Field :

Fi el d Format: Lvl Nunber....:
Fi el d Length: Lvl Type Trail:
Rank........:

From I ndex Thru Index 1:V Field Occurrences

CTEELN1
12:52 PM

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit i

mal

Driver for Subprogram CNUEL Window

Natural Submenu, Data Areas Submenu, Field Information Option

— 356 —

External Objects

CNUELNX Subprogram
CNUELNX Description
What it does Returns information about the next field in a data area.

PDAs used

File accessed

This subprogram receives the name of an external data
area and returns information about the next field in that
data area. On the first call to this subprogram, the field in
the data area is returned. On subsequent calls, the next
fields are returned.

The CNRELNX PDA (containing reserved variables) keeps
track of the current position of the data area and must not
be modified by the calling program. (For more information
about the INPUT/OUTPUT parameters, see the
CNAELNX PDA in the SYSCST library.)

CNAELNX
CNRELNX
CSASTD

SYSTEM-FNAT

- 357 -

Natural Construct Administration and Modeling User’s Manual

Driver Menu Option

help retrn quit

From I ndex Thru index 1:V Field Occurrences

CTENLNX **x*x Natural Related subprograns ***** CTENLNX1
Oct 09 - Driver for subprogram CNUELNX - 12: 55 PM
*Data Area Nane..: __ Field Count: Constant Field :

First Time......: X End O File: Fi el d Redefi ned:
Structure Nane..: Field Format...:

Field Nane......: Field Length...:

View Of Nane....: Units..........:

Level Number....: Decimals.......:

Level Type Trail: Rank...........:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1

mal

Driver for Subprogram CNUELNX Window
Natural Submenu, Data Areas Submenu, Get Next Field Information Option

- 358 -

External Objects

CNUERMSG Subprogram

CNUERMSG Description

What it does Receives a Natural error message number and returns the

error message text.

This subprogram receives a Natural error message number
(CSASTD.MSG-NR) and returns the corresponding error
message text (CSASTD.MSG). For example, the message
text for Natural message number 0888 is “Storage
Overflow During Compilation or Execution”.

PDA used CSASTD
File accessed SYSTEM-FNAT
Note: This subprogram returns system error messages rather than application

error messages. For information about application error messages, see
CNUMSG Subprogram, page 366.

Driver Menu Option

CTEERMSG Natural Construct CTERVSGL
Aug 14 Driver for subprogram CNUERVSG 1of 1
Msg Nr...: Error Fld:
Ret Code :
Msg:
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CNUERMSG Window
Natural Submenu, Retrieve System Error Msg Option

—359 -

Natural Construct Administration and Modeling User’s Manual

CNUEXIST Subprogram

CNUEXIST

Description

What it does

PDAs used

Files accessed

Checks for the existence of a Natural module.

This subprogram receives a Natural module name and
determines whether its source, compiled object, or both
exist. If the source and/or compiled object exist, this
subprogram returns the module type (P, for program) and
the library name(s) where the source and/or compiled
object(s) were found.

If the module is not found in the current library, you can
request a search of all steplibs. In this case, the name of the
first library where the module was found is returned.

CNAEXIST
CSASTD

SYSTEM-FUSER
SYSTEM-FNAT

Driver Menu Option

hel p

CTEEXI ST **xxx Natural Related Subprogranms ***** CTEXI ST
Oct 09 - Driver for subprogram CNUEXI ST - 01:14 P
*(Obj ect/ Source Nane......: _ Sour ce oj ect
Library Name............: CST341_ - mmmmmmm e e
Exi sts.: Exi sts.:
Milti Steplib Search....: _ Type. . .: Type...:
Default DBIDFNR Only: _ Li brary: Li brary:
DBID...: DBID...:
Obj ect/ Source or Both...: _ FNR. .. .: FNR. .. .:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
retrn quit mai

Driver for Subprogram CNUEXIST Window

Natural Submenu, Verify Source/Object Existence Option

- 360 —

External Objects

CNUGDABL Subprogram
CNUGDABL Description
What it does Builds a full path name for a global data area (GDA) block.

This subprogram receives a GDA name and the name of a
GDA block. It returns the full path name from the master
block to the specified block. For example, if BLOCK11 is a
sub-block of BLOCK1, which is a sub-block of MASTER-
BLOCK, the following full path name is returned:

MASTER- BLOCK. BLOCK1. BLOCK11

PDAs used CNAGDABL
CSASTD
Files accessed SYSTEM-FUSER

SYSTEM-FNAT

Driver Menu Option

CTEGDABL Natural Construct CTEGDAB1
Aug 14 Driver for subprogram CNUGDABL 1of 1
*GDA Nane......: ___ _

Bl ock Nane....:

Ful | Path Nane:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CNUGDABL Window
Natural Submenu, Build Path Name for GDA Block Option

- 361 -

Natural Construct Administration and Modeling User’s Manual

CNUGDAEL Subprogram

CNUGDAEL Description
What it does Verifies that a field is contained in a global data area
(GDA).

This subprogram receives the name of a GDA and the
name of a field. If the field exists in the GDA, this
subprogram returns a confirmation flag.

PDAs used CNAGDAEL

Files accessed SYSTEM-FNAT
SYSTEM-FUSER

Driver Menu Option

CTEGDAEL Natural Construct CTEGDAE1
Aug 14 Driver for subprogram CNUGDAEL 1of 1
*GDA Nane. . .: _

Field Nane :

Fi el d Found:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CNUGDAEL Window
Natural Submenu, Verify GDA Field Existence Option

- 362 —

External Objects

CNUGENDA Subprogram
CNUGENDA Description
What it does Adds a field to a data area. This subprogram receives the

definition of a field (field type, level number, field name,
field format and length, and the number of occurrences, for
example) to be added to a data area and generates the field
definition at the end of the current edit buffer.

For more information about the INPUT/OUTPUT
parameters, see the CNAGENDA data area in the SYSCST
library

Note: Before this subprogram is invoked, the calling program
must set the Natural editor to a data area type of A, L, or

G.
PDAs used CNAGENDA
CNRGENDA
CSASTD
Files accessed None

Driver Menu Option

CTEGENDA Natural Construct CTEGEND1
Aug 14 Driver for subprogram CNUGENDA 1of 1
Fi el d Name

Field Type: _ Format: _ Cccurrences: __

Level: _ Length: ___ Comment....

help retrn quit

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1

mal

Driver for Subprogram CNUGENDA Window

Natural Submenu, Data Areas Submenu, Add a Field to a Data Area Option

- 363 —

Natural Construct Administration and Modeling User’s Manual

CNUMPPRF Subprogram

CNUMPPRF

Description

What it does

PDAs used

File accessed

Reads a map profile from a Natural system file.

This subprogram receives the name of the map profile in
the CSAMPSET .#PROFILE field. It reads the specified
map profile from the Natural system file (FNAT) and
returns the map settings.

For information about the OUTPUT parameters, see the
CSAMPSET data area in the SYSCST library.

CSAMPSET
CSASTD

SYSTEM-FNAT

Note: This routine is not available on all platforms.

—364 -

External Objects

Driver Menu Option

CTEMPPRF Natural Construct CTEMPRF1

Aug 14 Driver for subprogram CNUMPPRF 1of 1

Map Profile....: __ Layout......: Map Type.....:

Map Version....: Map Nane....: Std Keys....:
L T +

1 | Delimter dass AD CD Delimter Char |

DC: I -- L R | Col Shift....:

PS: | | Case Deflt...:

LS: | | Cursor Skip..:

ZP: | | PM..........:
T IR +

Wite Statenent: Qv Justification:

I nput Statenent: Error Code. .: Enforce Attr

Auto Rule Rank : Hp FId Dflt:

Fill Character : Help........:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1

help retrn quit bkwd frwd mai

Driver for Subprogram CNUMPPRF Window
Natural Submenu, Map Settings Information Option

—365—

Natural Construct Administration and Modeling User’s Manual

CNUMSG Subprogram

CNUMSG

Description

What it does

Returns application message text from the SYSERR
message file.

This subprogram receives the following input:
¢ message number

¢ message library (CSTMSG by default)

* message text

¢ substitution data members

¢ message libraries for data members (CSTLDA by
default)

¢ retrieval method

¢ default languages (used if message number is not
located using *Language)

It processes message text based on one of the following
retrieval methods:

Performs text retrieval based on message numbers. A
message number can be entered in either the Message
Number field or the Message Text (Input) field. If a
message number is entered in the Message Number field,
the corresponding text is retrieved from the message
library (CSTMSG by default) and displayed at runtime. If
the Message Number field is blank, the subprogram scans
the Message Text (Input) field for a message number. If
one is located, it is replaced with its corresponding text
from the message library.

For example, suppose message number “*2309”
corresponds to the message text “:1::2::3:does not exist”. If
this message number is located in either the Message
Number or Message Text (Input) fields, the subsystem will
retrieve the message text “:1::2::3:does not exist”.

— 366 —

External Objects

CNUMSG

Description (continued)

Performs text substitutions in the Message Text (Input)
field. A substitution will occur if typing placeholders are
found in the message text. Placeholders are replaced at
runtime with a value entered in one of the Message
Substitution Data fields (1, 2, and 3). Placeholders are
entered in the following format: “:N:”, where “N” identifies
one of the three Message Substitution Data fields.

For example, suppose you enter the following message text:
“:1::2::3:does not exist”, and the Message Substitution Data
field 1 is “File”, and the Message Substitution Data field 2
is “NCST-CUSTOMER?”. The returned message text would
be “File NCST-CUSTOMER does not exist”.

For more information about message numbers and
placeholders, see Using SYSERR References, page 496.

Performs text retrieval using methods R and S which are
explained earlier in this section. This method also supports
inline retrieval and substitution; that is, typing the
message number and substitution values directly in the
Message Text (Input) field.

For example, suppose you type the following entry in the
Message Text (Input) field: “*2309,%*2075.1, NCST-
CUSTOMER?”. The subprogram assigns 2309 as the
message number and retrieves the message, “:1::2::3:does
not exist”. The first substitution value is retrieved from
message 2075.1, which is “File”. The second substitution
value is the text “NCST-CUSTOMER”. At runtime, “File
NCST-CUSTOMER does not exist” is displayed.

- 367 —

Natural Construct Administration and Modeling User’s Manual

CNUMSG

Description (continued)

PDA used

File accessed

Note:

If you are using message numbers, you can specify up to
eight default languages. If the message text for the
message number is not found using the currently selected
language (*Language), the subprogram will search for the
message in each of the specified default languages.

The search begins with the *Language code specified in the
first Default Language field through to the last Default

Language field in which a code is specified. If the message
is still not located, the subprogram will search the message
text for the default system *Language code of 1 (English).

You can center text entered in the Message Text (Input)
field using the “,+/NN” notation, where NN is the number
of characters to be centered. For more information, see
Using SYSERR References, page 496.

CNAMSG
CSASTD

SYSTEM-FUSER

— 368 —

External Objects

Driver Menu Option

Message Nunber.: 0008 *Message Library: CSTMSG _
Message Text (Input)

CTEMSG **xx* Natural Related subprogranms ***** CTENMSGL
Oct 16 - Driver for subprogram CNUMSG - 08: 53 AM

Message Substitution

Def aul t Languages
*LANGUAGE: 1 1) 1_2) 1_3) 1_4) 1_5) 1_6) 1_7) 1_8) 1_

Response Code: 0 (9 - unsuccessful)

help retrn quit

Retrieval Method: R ('R for Retrieve, 'S for Substitute, 'B for Both)

Data(1): *Message Library: CSTLDA _
Dat a(2): *Message Library: CSTLDA _
Dat a(3) : *Message Library: CSTLDA _

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1

mal

Driver for Subprogram CNUMSG Window
Natural Submenu, Retrieve Application Error Message
Retrieve Single Message Option

- 369 —

Natural Construct Administration and Modeling User’s Manual

CNUPEXST Subprogram

CNUPEXST Description

What it does Checks for the existence of a map profile.

This subprogram receives the name of a map profile and
verifies that it exists in the Natural FNAT system file.

PDA used CNAPEXST
File accessed SYSTEM-FNAT

Note: This module is not available on all platforms.

Driver Menu Option

CTEPEXST Natural Construct CTEPXST1
Aug 14 Driver for subprogram CNUPEXST 1of 1

Map Profile Nane..:
Map Profile Exists:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CNUPEXST Window
Natural Submenu, Verify Map Profile Existence Option

- 370 -

External Objects

CNUSEL Subprogram

CNUSEL Description

What it does Selects fields from data areas (local or parameter).

This subprogram receives the name of a local (LDA) or
parameter data area (PDA) and browses fields in the data
area. To select a field, mark it. If more than one field is
marked, only the first field is selected. You can enter X to
terminate the display or T to position the list to the top.

PDAs used CNASEL
CSASTD
Files accessed None

Driver Menu Option

CTESEL *xxxx Construct Rel ated Subprograns ***** CTESEL1
Cct 09, 96 - Driver for subprogram CNUSEL - 01: 52 PM
*Data Area Name..: __ __ Fld Nane:

Fi el d Cccurrences
Structure Nunber: Field Format: = c--eemmmaaa oo
Type O Field...: Field Length:
Level Nunber....: Units.......:
Total Fields Cnt: O Decinmal s....:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CNUSEL Window

-371-

Natural Construct Administration and Modeling User’s Manual

CNUSRCNX Subprogram

CNUSRCNX

Description

What it does

PDAs used

Note:

Files accessed

Receives the name of the Natural object and returns the
next source line. The first call to the subprogram returns
the first source line. Subsequent calls return the next lines.

CNASRCNX
CNRSRCNX
CSASTD

The CNRSRCNX data area (containing reserved variables)
keeps track of the current position of the object source and
must not be modified by the calling program.

SYSTEM-FUSER
SYSTEM-FNAT

Driver Menu Option

CTESRCNX Natural Construct CTESRCN1
Aug 14 Driver for subprogram CNUSRCNX 1of 1
*(Chj ect Name: CTELRDSM Ver si on:

First Time : X I ncl ude Comments: _

Src Line...: Useri d: Date...: - - Type:

End O Src : Level : Time...: o SM . :

Src Code. . .:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CNUSRCNX Window
Natural Submenu, Get Next Source Line Option

-372 -

External Objects

CNUSRCRD Subprogram
CNUSRCRD Description
What it does Reads source text and performs specified processing.

PDAs used

Files accessed

This subprogram receives the name of a Natural object (in
the CNASRCRD.#OBJECT-NAME field) and the name of
the subprogram invoked to process each source line (in the
CNASRCRD.#CALLNAT field). It passes the fields it
receives to the subprogram it invokes.

CU---DA, which contains the model parameters, is also
passed to CNUSRCRD, as well as the CSAPASS PDA.
CSAPASS can be redefined as required. It “remembers”
information between calls to the subprogram that
processes each source line.

CNASRCRD

CU--PDA (model PDA)

CSAPASS (redefined as required)
CSASTD

SYSTEM-FUSER
SYSTEM-FNAT

-373-

Natural Construct Administration and Modeling User’s Manual

Driver Menu Option

CTESRCRD Natural Construct CTESRCR1
Aug 14 Driver for subprogram CNUSRCRD 1of 1
*(Chj ect Nane: - Fi ni shed:

*CALLNAT. ...: CTESRCSM I ncl ude Comment s:

bj ect Information

Type.......: Ver si on: Userid: Ti me: .
SM........: Level . .: Dat e: - -
Src Line...:

Sour ce Code:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CNUSRCRD Window
Natural Submenu, CALLNAT For Each Source Line Option

—374-

External Objects

Natural-Related Helproutines (CNH®)

You can attach the following helproutines to fields that require the input of Natu-
ral information (such as object names, message numbers, etc.). They are active
helproutines that populate the field to which they are attached.

CNHMDL Helproutine
CNHMDL Description
What it does Browses all the Natural Construct models for selection.

Attached to

Parameter used

File accessed

Valid restriction parameters are:

¢ S (display statement models only)
¢ M (display program models only)
* B (display all models)

Input of a Natural Construct model name.

#PDA-RESTRICTION(A1)
#PDA-KEY(A32) (model name)

NCST-MODEL

- 375 -

Natural Construct Administration and Modeling User’s Manual

CNHMSG Helproutine
CNHMSG Description
What it does Browses for and displays the application error message

Attached to

Parameters used

File accessed

text. You can add new messages to the application by
pressing the Add PF-key (the new message number is
always adjusted to the next available number).

Input of a message number field.
#PDA-MESSAGE(A65)
#PDA-MESSAGE-LIBRARY(A8)
#PDA-KEY(N4)

SYSTEM-FUSER

- 376 -

External Objects

CNHOBJ Helproutine
CNHOBJ Description
What it does Browses all objects of a specified type in the current

Attached to

Parameters used

File accessed

library. This helproutine receives an object type and
browses all the objects with that type that exist in the
current library. Valid object types are:

¢ P (program)

¢ N (subprogram)
¢ S (subroutine)

¢ M (map)

¢ H (helproutine)
e C (copycode)

¢ A (parameter)

* G (global)

e L (local)
e T (text)
o *(all)

¢ 2 (subprogram/helproutine)

¢ 3 (subprogram/helproutine/subroutine)

e 4 (program/subprogram/helproutine/subroutine)
¢ 5 (command processor)

¢ D (data area)

Input of a Natural object name field.

#PDA-TYPE(A1)
#PDA-KEY(A8)/* Start/Return key

SYSTEM-FUSER

-377-

Natural Construct Administration and Modeling User’s Manual

Natural Construct Generation Utility
Subprograms (CSU%*)

The following subprograms perform specialized functions to assist in the genera-
tion process.

Note: Drivers for many of the supplied programs/subprograms are available
through the Drivers menu option on the Administration main menu. If a
driver program is available, its location is listed under the Drivers option
in the program/subprogram’s description. For more information about the
supplied driver programs, see Drivers Menu Function, page 79.

- 378 —

External Objects

CSU-VAR Subprogram

CSU-VAR

Description

What it does

Validates a specified variable name.

This subprogram receives a string and checks for a valid
Natural naming convention. Use it whenever a name used
as a Natural variable is input. If the name is invalid, the
subprogram returns a message containing the reason.

Note: The name can be fully qualified (contain a prefix).

Parameters used #PDA-STRING(A65)/*INPUT

Files accessed

CSASTD

None

Driver Menu Option

CTE- VAR
Oct 09

String:

x%x Construct Rel ated Subprograns *** CTE- VARL
- Driver for subprogram CSU VAR - 02: 58 PM

Msg. . .:

hel p

Ent er - PF1- -

- PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1

retrn quit mai

Driver for Subprogram CSU-VAR Window
Other Submenu, Validation Subroutines Submenu
Validate a Variable Name Option

- 379 -

Natural Construct Administration and Modeling User’s Manual

CSUBANN Subprogram
CSUBANN Description
What it does Generates the standard banner into the source buffer. Use

this subprogram to generate Natural or Visual Basic
comments.

Parameters used CSABANN
CSASTD

Files accessed None

CSUBLDRP Subprogram

CSUBLDRP Description

What it does Builds a report layout. This subprogram builds a report
layout for the Batch, Browse, and Browse-Select models. It
can be invoked from a sample subprogram within a user
exit. The invoking subprogram must issue an initial
RESET statement to clear the structures in CSASELFV.
For example:
RESET CSASELFV
CSASELFV. GENERAL- | NFORVATI ON
CSASELFV. FI ELD- SPECI FI CATI ON(*)
The sample subprogram must also contain a SET KEY
ALL statement.
For an example of how to invoke the CSUBLDRP utility,
see the CUSCSRP subprogram in the SYSCST library.

PDAs used CSABLDRP
CSASELFV
CSASTD

Files accessed None

—380 -

External Objects

CSUBMIT Subprogram (Mainframe)

CSUBMIT

Description

What it does

PDAs used

Files accessed

Submits a job for execution. The JCL for the job must be in
the source buffer.

This subprogram is used in conjunction with the CSUSUB
command. For more information, see the JCL Submit
Utility (Mainframe), page 905 in Natural Construct
Generation User’s Manual.

CSASTD

None

—-381 -

Natural Construct Administration and Modeling User’s Manual

CSUBYTES Subprogram

CSUBYTES Description

What it does Calculates the required bytes for a field, based on the
field’s Natural format and length.

This subprogram receives the length and format of a field
and returns the number of bytes occupied by the field.

PDAs used CSABYTES
CSASTD
Files accessed None

Driver Menu Option

CTEBYTES Natural Construct CTEBYTE1

Aug 14 Driver for subprogram CSUBYTES 1of 1

Field Format: _ Bytes.......:

Field Length: _

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUBYTES Window
Other Submenu, General Utility Subprograms Submenu
Storage Required for a Variable Option

—-382 -

External Objects

CSUCASE Subprogram

CSUCASE Description

What it does Converts a string to upper/lower/mixed case. This
subprogram receives a string and a desired function. It
converts and returns the string as follows:

e If the function is U, this subprogram converts all alpha
characters in the string to upper case.
e If the function is L, it converts all alpha characters to
lower case.
e If the function is M, it converts the alpha characters as
follows:
— removes leading hash (#) or plus (+) characters
— replaces all dashes (-) and underscores (_) with
blanks
— converts the first character, as well as all characters
following a dash or underscore, to upper case

PDAs used CSACASE
CSASTD
Files accessed None

Driver Menu Option

CTECASE Natural Construct CTECASE1
Aug 14 Driver for subprogram CSUCASE 1of 1
Function: _ U=Upper, L=Lower, MM xed Case

String..:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUCASE Window
Other Submenu, General Utility Subprograms Submenu
Convert Text to Upper/Lower/Mix Option

- 383 -

Natural Construct Administration and Modeling User’s Manual

CSUCCMD Subprogram

CSUCCMD

Description

What it does

Note:

Note:

Parameters used

Files accessed

Generates command block delimiters into the Natural
source buffer for models that generate multiple modules.

This subprogram receives a command type, an eight
character module name, a module type, and, optionally, the
name of a model.

Natural Construct evaluates the contents of these
command blocks after it processes the pre-generation
subprogram for the multi-generation model. Before
continuing the generation process, Natural Construct
either creates the child model specification or saves, stows,
and catalogs the contents of the command block.

CSUCCMD must always be called twice — first to initialize
the command block and then to close it after generating the
contents of the command block.

See the CSLCCMD local data area for valid command
values.

You cannot use nested command blocks.

CSACCMD
CSASTD

None

—384 -

External Objects

CSUCENTR Subprogram
CSUCENTR Description
What it does Centers a text string.

This subprogram centers text, such as headings, in a
variable. The length passed to this subprogram should be

either:
¢ the length of the variable that stores the heading
or

¢ the length of the AL parameter that displays the
variable that stores the heading

PDAs used CSACENTR
CSASTD
Files accessed None

Driver Menu Option

CTECENTR Natural Construct CTECNTR1
Aug 14 Driver for subprogram CSUCENTR 1of 1
Length: __

String:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUCENTR Window
Other Submenu, Text Related Subprograms Submenu
Center a Text String Option

—385-

Natural Construct Administration and Modeling User’s Manual

CSUCOMPR Subprogram

CSUCOMPR Description

What it does

Generates an IF clause for two structures. The subprogram
receives two structure names and a list of underlying
components to compare. It generates the IF clause
according to the criteria requested (LT, LE, GT, GE).

Note: DB2 users should use the CSUDB2SP subprogram to
compare key values (see the following section for a
description of this subprogram).

PDAs used CSACOMPR
CSASTD
Files accessed None

Driver Menu Option

CTECOMPR
Aug 14

Conpari son

Ent er - PF1-
hel p

Natural Construct CTECOWP1
Driver for subprogram CSUCOWPR 1of 1
Qperator.: __ Lhs Structure:
Rhs Structure:

Conponent Fl d Name

--PF2- - - PF3--- PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1

retrn quit bkwd frwd mai

Driver for Subprogram CSUCOMPR Window
Other Submenu, DB2 Related Subprograms Submenu
Generate an IF for a Superde Option

— 386 —

External Objects

CSUCTRL Subprogram
CSUCTRL Description
What it does Retrieves information from the Natural Construct Control

Parameters used

Files accessed

record and sets the PF-keys, help indicator, underscore
characters, position indicators, disable indicator, scroll
indicator, “of” right prompt, and dynamic attributes for
Natural Construct.

CU--PDA
CSASTD

NCST-CONTROL

CSUCURS Subprogram

CSUCURS

Description

What it does

Parameters used

Files accessed

Determines the position of the field in which the cursor is
placed. This subprogram is invoked when runtime
translation is requested. It determines the message
numbers and positions associated with fields in a
translation LDA and invokes the CSUTLATE subprogram
to perform runtime translation.

#TRANSLATION-DATA(A1/1:V)
#SYSERR-APPL(AS)
#DATA-AREA-NAME(AS)
#TEXT-REQUIRED(L)
#LENGTH-OVERRIDE(I4)
CSACURS

CSASTD

None

— 387 -

Natural Construct Administration and Modeling User’s Manual

CSUCURSI1 Subprogram

CSUCURS1

Description

What it does

Parameters used

Files accessed

Determines the position of a single field in which the cursor
is placed.

This subprogram is invoked whenever runtime translation
of a single field is requested. It determines the message
number and position associated with that field and invokes
the CSUTLATE subprogram to perform runtime
translation.

#TRANSLATION-DATA(A1/1:V)
#SYSERR-APPL(AS)
CSASTD

None

— 388 —

External Objects

CSUDB2SP Subprogram
CSUDB2SP Description
What it does Generates a FIND statement for a superdescriptor. This

statement retrieves DB2 records based on a complex key
definition. If a complex key is composed of 5 fields (Field1,
Field2, Field3, Field4, and Field5), for example, the
generated FIND/WHERE clause is:

Fieldl CE # NPUT. Fi el d1
SORTED BYFi el d1

Fi el d2

Fiel d3

Fiel d4

Fi el d5

VWHERE Fi el d2 GE #| NPUT. Fi el d2
AND Fi el d3 GE #| NPUT. Fi el d3
AND Fi el d4 GE #l NPUT. Fi el d4
AND Fi el d5 GE #| NPUT. Fi el d5
OR Fieldl GE #I NPUT. Fi el d1
AND Fi el d2 GE #| NPUT. Fi el d2
AND Fi el d3 GE #| NPUT. Fi el d3
AND Fi el d4 GT #l NPUT. Fi el d4
OR Fieldl GE #INPUT. Fi el d1
AND Fi el d2 GE #| NPUT. Fi el d2
AND Fi el d3 GTI #l NPUT. Fi el d3
OR Fieldl GE #I NPUT. Fi el d1
AND Fi el d2 GTI #l NPUT. Fi el d2
OR Fieldl GI #I NPUT. Fi el d1

Note: #INPUT is the qualifier for the RHS fields of the

inequations.
PDAs used CSADB2SP

CU--PDA

CSASTD
Files accessed None

—389 —

Natural Construct Administration and Modeling User’s Manual

Driver Menu Option

CTEDB2SP Natural Construct CTEDB2S1
Aug 14 Driver for subprogram CSUDB2SP 1of 1
*File Name.........: Fi nd Next Record:
*Field Name........:

Function..........:

RHS Structure.....:
RHS Index.........:

Prefix Length.....:
Low Key Structure :
Hi gh Key Structure:

Tab...............:
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUDB2SP Window
Other Submenu, DB2 Related Subprograms Submenu
Generate a FIND for a Superde Option

-390 -

External Objects

CSUDELFF Subprogram

CSUDELFF Description

What it does Deletes the lines containing */in the edit buffer.

This subprogram searches for and deletes the lines
containing */ in the edit buffer. These lines are written by
WRITE/PRINT statements when the DEFINE PRINTER
OUTPUT 'SOURCE' statement is used.

PDAs used None

Files accessed None

Driver Menu Option

CTEDELFF Natural Construct CTEMVAPL
Aug 14 Driver for subprogram CSUDELFF 1of 1

Read in New Source: _
*New Source Nane...: __ _
New Source Library: DEVPR_ __

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUDELFF Window
Other Submenu, Edit Buffer Related Subprograms Submenu
Delete Lines Containing */ Option

-391 -

Natural Construct Administration and Modeling User’s Manual

CSUDEFLT Subprogram
CSUDEFLT Description
What it does Provides defaults used by the Natural Construct models.

Parameters used

Files accessed

This subprogram provides an interface between generated
applications and the user-maintained CSXDEFLT
subprogram. To override default settings, modify
CSXDEFLT. The CCDEFLTA, CCDEFLTL, and
CCDEFLTN copycode members return defaults for
alphanumeric, logical, and numeric values, respectively.

CSADEFLT
CSASTD

None

-392 -

External Objects

CSUDYNAT Subprogram
CSUDYNAT Description
What it does Builds parameters containing dynamic attributes. This

Note:

subprogram receives a set of dynamic attribute characters
in the CSADYNA #ATTRIBUTE-CHARS(A11/1:13) field
and builds the definition for the DY= parameter. The
positioning within this array indicates the type of dynamic
attribute assigned. The positions and attributes are:

¢ 1 (normal intensity)
* 2 (intensified)

* 3 (blinking)

e 4 (cursive/italic)

* 5 (underlined)

* 6 (reversed video)

e 7 (blue)

e 8 (green)

¢ 9 (neutral/white)
* 10 (pink)

e 11 (red)

e 12 (turquoise)
e 13 (yellow)

For example, if you input:
#ATTRI BUTE- CHARS(1)
#ATTRI BUTE- CHARS(2)
This subprogram returns:
#DY- PARAMETER = DY={|

If the caller’s attributes are printable special characters,
they are represented literally. Otherwise, they are
represented using the HH syntax. Note that programs
containing those represented in hex may not be portable.

The dynamic attribute character specified in position 1,
which corresponds to normal intensity, is always coded at
the end of the DY= parameter.

-393 -

Natural Construct Administration and Modeling User’s Manual

CSUDYNAT Description (continued)
PDAs used CSADYNAT

CSASTD
Files accessed None

Driver Menu Option

CTEDYNAT Natural Construct CTEDYNT1
Aug 14 Driver for subprogram CSUDYNAT 1of 1

Attribute Characters

(1) Nornmal Intensity..: _ (8) Geen.............: _
(2) Intensified.......: _ (9) Neutral (white)...: _
(3) Blinking..........: _ (10) Pink..............0 _
(4) Cursivel/ltalic....: _ (11) Red. ... _
(5) Underlined........: _ (12) Turquoise.........: _
(6) Reversed Video....: _ (13) Yellow............: _

Dynami c Attribute Paraneter:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUDYNAT Window
Other Submenu, Text Related Subprograms Submenu
Build Dynamic Attribute Option

-394 —

External Objects

CSUEMLEN Subprogram

CSUEMLEN Description

What it does Determines the number of characters (bytes) required to
display an edit mask.

This subprogram receives the name of an edit mask and
the format of the field to which the edit mask is applied. It
returns the number of characters (bytes) required to
display the edit mask.

PDAs used CSAEMLEN
CSASTD
Files accessed None

Driver Menu Option

CTEEMLEN Natural Construct CTEMLEN1
Aug 14 Driver for subprogram CSUEMLEN 1of 1
Edit Mask.....:

Field Format..: __

Di spl ay Lengt h:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUEMLEN Window
Other Submenu, Text Related Subprograms Submenu
Calculate Bytes to Display Emask Option

—395 -

Natural Construct Administration and Modeling User’s Manual

CSUENDX Subprogram

CSUENDX Description

What it does Generates the end of a user exit prompt.

This subprogram is used by sample subprograms that
generate multiple user exits. Call this subprogram after
each user exit is generated. (You do not need to call this
subprogram after the last user exit.)

PDAs used None

Files accessed None

Driver Menu Option

CTEENDX Natural Construct CTEMAPL
Aug 14 Driver for subprogram CSUENDX 1of 1

Read in New Source: _
*New Source Nane...: __ _
New Source Library: DEVPR_ __

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUENDX Window
Other Submenu, User Exit Related Subprograms Submenu
Generate End to User Exit Option

- 396 —

External Objects

CSUFDEF Subprogram

CSUFDEF Description

What it does Validates a field definition.

This subprogram receives the Natural format and length of
a field and a list of invalid field formats to disallow. To
disallow control variables as input variables, for example,
list the invalid formats in the CSAFDEF #INVALID
FORMATS field.

If the field definition is valid, nothing is returned in
CSUFDETF. If the field definition is invalid, CSASTD.MSG
and CSASTD.ERROR-FIELD contain an error message
and the invalid component of the field (FIELD-FORMAT,
DECIMALS, or UNIT).

PDAs used CSAFDEF
CSASTD
Files accessed None

Driver Menu Option

CTEFDEF Natural Construct CTEFDEF1
Aug 14 Driver for subprogram CSUFDEF 1of 1
Field Format...: Invalid Formats:

Field Length...: __

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUFDEF Window
Other Submenu, Validation Subroutines Submenu
Validate Field Definition Option

- 397 -

Natural Construct Administration and Modeling User’s Manual

CSUFRVAR Subprogram

CSUFRVAR Description

What it does Returns the parameters and conditions from the model
code frames. This subprogram receives a model name and
traverses its code frames. It returns the code frame
parameters and conditions.

PDAs used CSAFRVAR
CSASTD

Files accessed NCST-FRAME-LINES
NCST-MODEL

Driver Menu Option

CTEFRVAR Natural Construct CTEFRVR1L
Aug 14 Driver for subprogram CSUFRVAR 1of 1
*Model Nane:

No. O Conditions : 0

No. O Frame Parms: 0

R R R +
| 1__ Condi tions | 1__ Frame Paraneters |

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit bkwd frwd mai

Driver for Subprogram CSUFRVAR Window
Other Submenu, NCST Model/Frame Related Subprograms Submenu
Model Code Frame Information Option

—-398 -

External Objects

CSUGEN Subprogram
CSUGEN Description
What it does Issues a CALLNAT to the Natural Construct Generate

Note:

Parameters used

Files accessed

function for a specified module.

This subprogram receives the names of a model PDA and a
model information PDA (CSAMODEL, which must contain
the name of the model) and uses the inputs to generate the
module code into the Natural source buffer. When the
CALLNAT is made to the module, the code is appended to
the contents of the Natural source buffer. The source buffer
name or type does not change.

The specified model PDA must contain the model
parameters required for generation.

This subprogram requires a NATPARM SSIZE of 55 or
greater.

CSAGEN
CSAMODEL
CU--PDA
CSASTD

NCST-ADA

—399 -

Natural Construct Administration and Modeling User’s Manual

CSUHEADS Subprogram

CSUHEADS Description

What it does Separates a line of headings into separate headings.

This subprogram receives a line of headings and returns
three separate headings (each with the length of longest

heading).
PDAs used CSAHEADS

CSASTD
Files accessed None

Driver Menu Option

CTEHEADS Natural Construct CTEHEAD1
Aug 14 Driver for subprogram CSUHEADS 1of 1
Headi ngs: Fi el d Headi ngs St acked

Fiel d Heading Wdth: 0

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUHEADS Window
Other Submenu, Text Related Subprograms Submenu
Separate a Line of Headings Option

—400 -

External Objects

CSUINCL Subprogram

CSUINCL Description

What it does Expands all copycode currently in the edit buffer.

This program inserts the source for all copycode (currently
in the edit buffer) into the edit buffer.

PDAs used None

Files accessed None

Driver Menu Option

CTEI NCL Natural Construct CTEVAP1
Aug 14 Driver for program CSU NCL 1of 1

Read in New Source: _
*New Source Nane...: __ _
New Source Library: DEVPR_ __

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Program CSUINCL Window
Other Submenu, Edit Buffer Related Subprograms Submenu
Expand All Copy Codes Option

—-401 -

Natural Construct Administration and Modeling User’s Manual

CSUIS Subprogram

CSUIS Description

What it does Checks whether the contents of an alphanumeric field can
be converted to a specified format and length. If the format
and length are invalid Natural formats, CSASTD.MSG
contains an error message when this subprogram is
invoked. If the format and length are valid, CSASTD.MSG
is blank.

In some cases, a user must specify a value using a certain
(variable) format and length. For example, the minimum/
maximum key values should be valid values corresponding
to the format and length of the key. You cannot use the

Natural IS function because the format is not known until

runtime.
PDAs used CSAIS

CSASTD
Files accessed None

Driver Menu Option

CTEl S Natural Construct CTEl S1
Aug 14 Driver for subprogram CSU S 1of 1
Fi el d Val ue.:

Field Format: _

Field Length: _

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUIS Window
Other Submenu, Validation Subroutines Submenu
Validate Format for Input Value Option

—-402 -

External Objects

CSULABEL Subprogram

CSULABEL Description

What it does Verifies a Natural looping label.

This subprogram receives a string of characters and
validates it against the Natural label naming convention.
If the label is valid, CSASTD.MSG is blank; if the label is
invalid, CSASTD.MSG contains an error message.

Parameters used #PDA-LABEL(A32)
CSASTD
Files accessed None

Driver Menu Option

CTELABEL Natural Construct CTELABL1
Aug 14 Driver for subprogram CSULABEL 1of 1
Label :
Msg. . :

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSULABEL Window
Other Submenu, Validation Subroutines Submenu, Validate a Label Option

- 403 -

Natural Construct Administration and Modeling User’s Manual

CSULENGT Subprogram

CSULENGT Description
What it does Builds an input prompt and calculates the length of the
heading.

This subprogram receives a field name, format, and length.
It builds the input prompt from the field headings (if no
heading was given, the field name is converted to mixed
case) and calculates the length from the format, length,
and edit mask. It also returns the heading length and sign
option (based on the field format and edit mask).

PDAs used CSALENGT
CSASTD
Files accessed None

Driver Menu Option

CTELENGT Natural Construct CTELNGT1
Aug 14 Driver for subprogram CSULENGT 1of 1
Field Nane....: Field Length....: _
Fi el d Headi ngs: Field Format....: _
: Sign...........00 _

Edit Mask.....:
I nput Pronpt..: Headi ng Length..:
Sg Option.....: Fld Displ Length:
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1

help retrn quit mai

Driver for Subprogram CSULENGT Window
Other Submenu, Text Related Subprograms Submenu
Calculate Length of a Heading Option

— 404 -

External Objects

CSULPS Subprogram

CSULPS

Description

What it does

Parameters used

Files accessed

Changes the display language (*Language value) and sets
the translation required flag to True.

This subprogram displays a list of all available languages
supported by Natural. When a new language is selected, it
switches the user’s Natural session to that language and
sets the translation required flag to True.

#PDA-TRANSLATION-REQUIRED (L)
CSASTD

SYSDIC-FI

— 405 -

Natural Construct Administration and Modeling User’s Manual

CSUMAX Subprogram

CSUMAX Description

What it does Generates the assignment of a maximum field value.

This subprogram receives the name, format, and length of
a variable and generates the assignment of the maximum
value for the field into the edit buffer. It is used when
reading a file for all values with a specified prefix, where
the suffix extends from the lowest to the highest value.

PDAs used CSAMAX
CSASTD
Files accessed None

Driver Menu Option

CTEMAX Natural Construct CTEMAXL
Aug 14 Driver for subprogram CSUVAX 1of 1
Field :

Format: _

Length: __

Tab...: __

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUMAX Window
Other Submenu, Edit Buffer Related Subprograms Submenu
Generate Assign of Max Field Val Option

— 406 —

External Objects

CSUMIMAX Subprogram

CSUMIMAX Description

What it does Generates the assignment of a minimum value for a field.

This subprogram receives the name of a variable and its
format and length. It generates the assignment of the
minimum/maximum values for the field into the edit

buffer.
PDAs used CSAMIMAX

CSASTD
Files accessed None

Driver Menu Option

CTEM MAX Natural Construct CTEM MX1
Aug 14 Driver for subprogram CSUM MAX 1of 1
Field :

Format: _ M ni mum Val ue: _ Non Negative M n/Max: _ Tab: __
Length: __ Descending...: _ DB2 Date/ Time Stanmp : _

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUMIMAX Window
Other Submenu, Edit Buffer Related Subprograms Submenu
Generate Assign of Min Field Val Option

— 407 -

Natural Construct Administration and Modeling User’s Manual

CSUMODEL Subprogram

CSUMODEL Description

What it does Returns information about a Natural Construct model.

This subprogram receives the name of a model and returns
the model description, generator mode and type, and the
names of the model PDA, subprograms, and code frames.

PDAs used CSAMODEL
CSASTD
Files accessed None

Driver Menu Option

CTEMODEL Natural Construct CTEMODL1
Aug 14 Driver for subprogram CSUMODEL 1of 1
*Model Nanme.......:

Model Description:

No. Mbdify Subps: Modi fy Subps Code Franes Cear Subp...:

No. Code Frames : = ---------mon oo Read Subp....:

Gener at or Mode. . : Save Subp....:

Generator Type..: Pre- Gen Subp.:

Di spl ay W ndow. . : Post - Gen Subp:

Start Comment...: Doc Subp.....:

End Comment.....: Pda Nane.....:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUMODEL Window
Other Submenu, NCST Model/Frame Related Subprograms Submenu
NCST Models Information Option

— 408 —

External Objects

CSUMORE Subprogram

CSUMORE

Description

What it does

Note:

Note:

Builds the initial assignment for the LEFT-MORE/
RIGHT-MORE array.

This subprogram receives a function (L for the LEFT-
MORE array, R for the RIGHT-MORE) and the number of
panels used by a program. These arrays contain the
prompts displayed at the top left or right corner of panels.
The prompts indicate the number of panels located to the
left or right of the current panel.

For example, to generate the initial value for the LEFT-
MORE-PROMPT array for a program with two panels,
enter:

CSAMORE. #LEFT- Rl GHT
CSAMORE. #NMAX- W NDOW

oL
2

The subprogram writes the following to the source buffer:
INNT < '','<1 nore' >

To generate the initial value for the RIGHT-MORE-
PROMPT array for a program with two panels, enter:

CSAMORE. #LEFT-RI GHT = 'R

The subprogram writes the following to the source buffer:
INNT <'1 nmore >','" >

Use a scalar field rather than an occurrence of this array.
Before the map is displayed, assign the array occurrence to
the scalar field. Using arrays on maps makes them
difficult to maintain and less suitable to use as standard
layouts.

If the value of *Language is not 1 during generation, the
word “more” is not included in the initial values.

—409 -

Natural Construct Administration and Modeling User’s Manual

CSUMORE Description (continued)
PDAs used CSAMORE

CSASTD
Files accessed None

Driver Menu Option

CTEMORE Natural Construct CTEMOREL
Aug 14 Driver for subprogram CSUMORE 1of 1
Left/Right: _ (L or R)

Max W ndows: _

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUMORE Window
Other Submenu, Edit Buffer Related Subprograms Submenu
Build Left/Right/More Prompt Option

—-410 -

External Objects

CSUMPBOX Subprogram
CSUMPBOX Description
What it does Handles the map edit buffer.

This subprogram receives a function and parameters (in
CSAMPBOX). It initializes the map edit buffer or
generates variable, array, and text control blocks into the
edit buffer.

PDAs used CSAMPBOX
CSASTD

Files accessed None

CSUMPCPR Subprogram

CSUMPCPR Description

What it does Replaces the map settings in the edit buffer with values
from the CSAMPSET parameter data area.

PDAs used CSAMPSET
CSASTD

Files accessed None

—-411 -

Natural Construct Administration and Modeling User’s Manual

CSUMPDUP Subprogram
CSUMPDUP Description
What it does Checks for the duplication of fields on a map.

This subprogram checks whether there are any fields
duplicated in the CSAMPFLD.FIELD-INFO(*) structure.
If there are duplicate fields, CSASTD.MSG contains an
error message when this subprogram is invoked.

PDAs used CSAMPFLD
CSASTD
Files accessed None
CSUMPLAY Subprogram
CSUMPLAY Description
What it does Loads the map layout into the edit buffer and returns the

map settings.

This subprogram receives the name, layout, and type of
map and loads the specified map into the edit buffer. It
returns the map settings.

PDAs used CSAMPSET
CSASTD
Files accessed None

—-412 -

External Objects

Driver Menu Option

Help.............:
Hel p- As- Fl d-Def | t:

help retrn quit

CTEMPLAY Natural Construct

Aug 14 Driver for subprogram CSUVPLAY

*Layout . . : - Error Code : Dc:
Map Ver si on: Ps:
Profile....: Ls:

Delimter d ass..:

Delimter Char...:

Cdo..oooi

Wite Statenent..: CV.........:

I nput Statenent..: Filler Char:

CTEMPLY1
1of 1

Cursor Skip...:

Std Keys......:
Justification :
Col Shift.....:
Case Deflt....:

Auto Rul e Rank:
Enforce Attr..:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1

mal

Driver for Subprogram CSUMPLAY Window
Other Submenu, Map Related Subprograms Submenu
Load Map Layout and Settings Option

- 413 -

Natural Construct Administration and Modeling User’s Manual

CSUMPMMS Subprogram

CSUMPMMS

Description

What it does

PDAs used

Files accessed

Merges the settings for two maps.

This subprogram merges the map settings from
CSAMPSET and CSAMPOUT. The settings in
CSAMPSET override the settings in CSAMPOUT and the
result is stored in CSAMPOUT.

CSAMPSET
CSAMPOUT

None

CSUMPOVL Subprogram

CSUMPOVL

Description

What it does

PDAs used

Files accessed

Checks the boundary on a map and determines if there are
overlapping fields.

This subprogram checks whether the fields specified in
CSAMPFLD exceed the line size or page size of the
available map panel.

The available map panel is a block of consecutive lines on
the panel. This block is determined by the specified page
and line size, excluding the map layout and any PF-keys.
The fields on the map cannot overlay the layout or PF-keys.

CSAMPFLD
CSASTD

None

- 414 —

External Objects

CSUMPREG Subprogram

CSUMPREG Description

What it does

Determines the available map area in a map layout.

This subprogram determines the first and last line on a
map that is available for editing in a specified map layout.

PDAs used CSAMPREG
CSASTD
Files accessed None

Driver Menu Option

Aug 14

*Layout :

CTEMPREG

Ent er - PF1-
hel p

Natural Construct CTEMPRGL
Driver for subprogram CSUMPREG 1of 1

First Available Line: Layout Page Size:
Last Avail abl e Line: Layout Line Size:

- - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
retrn quit mai

Driver for Subprogram CSUMPREG Window
Other Submenu, Map Related Subprograms Submenu
Find Available Area in Layout Option

—415 -

Natural Construct Administration and Modeling User’s Manual

CSUMPTAB Subprogram

CSUMPTAB

Description

What it does

PDAs used

Files accessed

Calculates the absolute field coordinates on a map and
creates the field prompts.

This subprogram receives field information from
CSAMPFLD and returns the absolute field positions and
prompts in CSAMPX-Y. Dots are added to each field
prompt in a region to extend its length to that of the longest
prompt in that region (... for ISA format and . . . for SAA
format).

For more information about the data returned, see the
CSAMPX-Y data area in the SYSCST library.

CSAMPFLD
CSAMPX-Y
CSASTD

None

- 416 -

External Objects

CSUMPTST Subprogram

CSUMPTST Description

What it does Tests the map specifications for the map currently in the
edit buffer.

PDAs used CSAMPTST
CSASTD

Files accessed None

Driver Menu Option

CTEMPTST Natural Construct CTEMTST1
Aug 14 Driver for subprogram CSUMPTST 1of 1
Read in New Map: _ Page Size: 23_
*Map Nane.......: ____ - Line Size: 80_
Map Library....: DEVPR___

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUMPTST Window
Other Submenu, Map Related Subprograms Submenu
Test Map Specifications Option

— 417 -

Natural Construct Administration and Modeling User’s Manual

CSUNATFM Subprogram
CSUNATFM Description
What it does Builds a valid Natural format definition from the formats

and lengths specified.

This subprogram receives the format and length values
and combines these to build a valid Natural format string.
For example, if you specify:

CSANATFM FI ELD- LENGTH = 9.0
CSANATFM FI ELD- FORMAT = ' P'

CSUNATFM produces the following output:
CSANATFM #Nat ur al - FORVAT = P9

PDAs used CSANATFM
CSASTD
Files accessed None

Driver Menu Option

CTENATFM Natural Construct CTENTFML
Aug 14 Driver for subprogram CSUNATFM 1of 1
Field Format: _ Natural Format:

Field Length: _

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUNATFM Window
Other Submenu, General Utility Subprograms Submenu
Build Natural Format Option

- 418 —

External Objects

CSUNEWX Subprogram

CSUNEWX Description

What it does Generates a new user exit prompt.

This subprogram receives the name of a user exit and
generates a starting point (DEFINE EXIT exit-name, for
example) for the user exit. It initiates a new user exit for
sample subprograms that are capable of generating more
than one exit.

PDA used CSANEWX

Files accessed None

Driver Menu Option

CTENEWK Natural Construct CTENEWK1
Aug 14 Driver for subprogram CSUNEWK 1of 1

User Exit Nane:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- -
help retrn quit

Driver for Subprogram CSUNEWX Window
Other Submenu, User Exit Related Subprograms Submenu
Generate New User Exit Prompt Option

—419 -

Natural Construct Administration and Modeling User’s Manual

CSUPARMS Subprogram

CSUPARMS Description

What it does Returns the value of a NATPARM parameter.

This subprogram receives a NATPARM parameter and
returns its corresponding value. Valid NATPARM
parameters are:

CF, DC, IA, ID, KD, ML, TB, and UL

For more information about the INPUT/OUTPUT
parameters for this subprogram, see the CSAPARMS data
area in the SYSCST library.

PDAs used CDUPARMA
CSASTD
Files accessed None

Driver Menu Option

CTEPARMS Natural Construct CTEPARML
Aug 14 Driver for subprogram CSUPARVS 1of 1
Pararmeter....: __ (1D CF, U, TB, I A DC, KD, M)

Al pha Val ue. .:

Nureri c Val ue:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUPARMS Window
Other Submenu, General Utility Subprograms Submenu
Get a NATPARM Parameter Value Option

— 420 -

External Objects

CSUPARTY Subprogram
CSUPARTY Description
What it does Identifies Natural data types and returns the byte length.

Parameters used

Files accessed

This subprogram receives the format and length for a data
type and indicates whether it is a valid Natural data type.
If it is, this subprogram returns the byte length.

CSAPARTY
CSASTD

None

—421-

Natural Construct Administration and Modeling User’s Manual

CSUPPER Program

CSUPPER Description

What it does Converts the contents of the source buffer to upper case.

This program reads through the source buffer and converts
specified lower case characters to upper case.

PDAs used None

Files accessed None

Driver Menu Option

CTEPPER Natural Construct CTEVAPL
Aug 14 Driver for program CSUPPER 1of 1

Read in New Source: _
*New Source Nane...: __ _
New Source Library: DEVPR_ __

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Program CSUPPER Window
Other Submenu, Edit Buffer Related Subprograms Submenu
Convert Source to Upper Case Option

—422 -

External Objects

CSUREADS Subprogram

CSUREADS

Description

What it does

Parameters used

Files accessed

Reads the specification parameters for a module.

This subprogram receives the name of a source module. If
the module was generated using Natural Construct, the
subprogram reads the source code and returns the model
parameter data area (PDA) containing the parameters
used to generate the module.

You can use the passed model PDA to call the model
subprograms for the model used to generate the module.

This subprogram also returns a data area that describes
the model and lists the names of the model subprograms.

This subprogram requires a NATPARM SSIZE of 55 or
greater.

#READ-THIS-MODULE(AS)
CSAMODEL

CU--PDA

CSASTD

NCST-ADA
SYSTEM-FUSER

Note: Ifyou know the name of the model used to generate the specified module,
you can pass its model PDA to CSUREADS rather than CU--PDA. After
the call to CSUREADS, the model PDA is populated with the parameters
used to generate the specified module.

— 423 -

Natural Construct Administration and Modeling User’s Manual

CSUREF Subprogram
CSUREF Description
What it does Generates referential integrity checks against foreign files.

Parameters used

Files accessed

This subprogram is typically called three times: once to
generate the data structures (DATA) required by the
generated code, once to generate the update edits
(UPDATE), and once to generate the delete edits
(DELETE). Set the value of CSAREF.FUNCTION-CODE
to either DATA, UPDATE, or DELETE.

After the first call, this subprogram returns the number of
update and delete edits found. This avoids unnecessary
subsequent calls.

CSAREF
CU--PDA
CSASTD

SYSDIC-RL
SYSDIC-FI

— 424 -

External Objects

CSUSCAN Subprogram

CSUSCAN Description

What it does Scans for the existence of a string in the edit buffer.

This subprogram receives a string and scans for (not
absolute) the existence of the string in the edit buffer.

PDA used CSASCAN

Files accessed None

Driver Menu Option

CTESCAN Natural Construct CTESCANL
Aug 14 Driver for subprogram CSUSCAN 1of 1
String..:

Absolute: _ (Mark if scan string need not be delimted by special chars)
Found...: _

Read in New Source: _
*New Source Nane...: _
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUSCAN Window
Other Submenu, Edit Buffer Related Subprograms Submenu
Scan for Existence of a String Option

— 425 -

Natural Construct Administration and Modeling User’s Manual

CSUSELFV Subprogram
CSUSELFV Description
What it does Selects fields/variables from views, LDAs, or PDAs.

PDAs used

Files accessed

This subprogram selects up to 40 fields/variables from up
to 6 different views, LDAs, or PDAs and appends the
selected fields/variables to CSASELFV. Existing fields/
variables in CSASELFV cannot be re-selected.

When selecting from data areas, you cannot select the
following:

* constants

¢ more than one structure

If you specify the select all option, then the first structure
in the data area is selected.

The invoking subprogram should issue an initial RESET
statement to clear the structures in CSASELFV, such as:

RESET CSASELFV
CSASELFV. GENERAL- | NFORMATI ON
CSASELFV. FI ELD- SPECI FI CATI ON(*)

CSASELFV
CSASTD

None

— 426 -

External Objects

CSUSETKY

CSUSETKY Subprogram

Description

What it does

PDAs used

Files accessed

Returns the PF-key definitions from the Control record.
This subprogram is used to support variable PF-keys
within Natural Construct. The PF-key names are returned
in the CSASETKY .#PF-NAME(*) array. The index for each
array element corresponds to the PF-key number. The
following example indicates that PF1 is named “help”:

#PF-NAVE(1) = ' hel p'

CSASETKY
CSASTD

NCST-CONTROL

Driver Menu Option

CTESETKY Natural Construct CTESETK1
Sep 01 Driver for subprogram CSUSETKY 1of 1
Pf Name Pf Nunber Pf Key
mai n Main...... : 12 Pf Main...... : PF12
retrn Return....: 2 Pf Return....: PF2
qui t Qit......: 3 Pf Qit......: PF3
t est Test......: 4 Pf Test......: PF4
bkwr d Backward..: 7 Pf Backward..: PF7
frwd Forward...: 8 Pf Forward...: PF8
left Left......: 10 Pf Left......: PF10
right Right.....: 11 Pf Right.....: PFl1
hel p Help......: 1 Pf Help......: PF1
Avai |l abl el: 5 Pf Avail abl el: PF5
Avai |l abl e2: 6 Pf Avail abl e2: PF6
Avai |l abl e3: 9 Pf Avail abl e3: PF9
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUSETKY Window
Other Submenu, General Utility Subprograms Submenu
Find PF Key Related Information Option

— 427 -

Natural Construct Administration and Modeling User’s Manual

CSUSETW Subprogram

CSUSETW Description
What it does Returns the SET CONTROL parameters to define a
window.

This subprogram receives the parameters for a window
(such as frame, line size, column size, base line, and base
column). It returns the SET CONTROL parameters to
define the window. For example, if the parameters are:
CSASETW FRAMVE=TRUE

CSASETW LI NE- SI ZE=70
CSASETW COLUMN- SI ZE=5

this subprogram returns:
CSASETW SET- CONTROL. PARME' VWBFL70C5'

PDAs used CSASETW
CSASTD
Files accessed None

Driver Menu Option

CTESETW Natural Construct CTESETWL
Aug 14 Driver for subprogram CSUSETW 1of 1
Frame......: _ Line Size..: ___ Base Line..: ___ Required Wdth : __

Colum Size: __ Base Colum: ___ Required Height: __

Set Control Parm

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUSETW Window
Other Submenu, Text Related Subprograms Submenu
Build Window Settings Option

— 428 —

External Objects

CSUSORT Program
CSUSORT Description
What it does Sorts a 2-dimensional array based on specified column

Parameters used

Files accessed

positions.

This subprogram receives a 2-dimensional array and sorts
the array based on the desired column positions. A Natural
SORTSIZE is not required because the sort uses an
internal bubble sort algorithm.

For an example of how to call this subprogram, see the
CSASORT parameter data area.

CSASORT
#SORT-DATA(A1/1:V,1:V)
CSASTD

None

— 429 -

Natural Construct Administration and Modeling User’s Manual

CSUSPLIT Program

CSUSPLIT Description

What it does Splits lines in the source buffer that are longer than 72
characters. Only lines with code extending beyond column
72 are split; lines with comments extending beyond column
72, but not code, are ignored. If a text string (enclosed
within quotes) extends beyond column 72, the entire string
is moved to the next line.

PDAs used None

Files accessed None

Driver Menu Option

CTESPLI T Natural Construct CTEVAPL
Aug 14 Driver for program CSUSPLI T 1of 1

Read in New Source: _
*New Source Nane...: __ _
New Source Library: DEVPR_ __

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Program CSUSPLIT Window
Other Submenu, Edit Buffer Related Subprograms Submenu
Split Long Lines in Edit Buffer Option

—430 -

External Objects

CSUSUB Program (Mainframe)

CSUSUB Description

What it does Submits a job for execution. The JCL for the job must be in
the source buffer.

This subprogram is used in conjunction with the CSUSUB
command. For information, see JCL Submit Utility
(Mainframe), page 905 in Natural Construct Generation
User’s Manual.

PDAs used None

Files accessed None

—431-

Natural Construct Administration and Modeling User’s Manual

CSUSUBP Subprogram

CSUSUBP

Description

What it does

PDAs used

Files accessed

Returns information about a Natural Construct model
subprogram, such as the PF-key settings and the window
sizes. This subprogram receives the name of a model
subprogram and returns information about that
subprogram. The information corresponds to the data
accessed through the Maintain Subprogram function.

CSASUBP
CSASTD

NCST-SUBPROGRAM

Driver Menu Option

hel p

Ent er - PF1- -

CTESUBP Natural Construct CTESUBP1
Aug 15 Driver for subprogram CSUSUBP 1of 1
Subprogram Name: __ -

Description....:

Backward Forward Fl ag: W ndow Length : Key Name No. O her Keys: _
Left Right Flag......: W ndow Col ums: --------

Test Key Flag........:

- PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1

retrn quit mai

Driver for Subprogram CSUSUBP Window,

Other Submenu, NCST Model/Frame Related Subprograms Submenu,

NCST Subprograms Information Option

—432-

External Objects

CSUTEST Program

CSUTEST Description

What it does Tests the subprograms for Natural Construct-generated
models. This program tests the individual subprograms for
Natural Construct-generated models. For information, see
Testing the Model Subprograms, page 178.

PDAs used None

File accessed

NCST-SUBPROGRAM
NCST-CONTROL

Driver Menu Option

CSUTEST
Aug 14

Code Function
R Rel ease Vari abl es
* Execute All Subp.
1-9 Execute One Subp.
E Edit source
C Clear Edit Buffer
? Hel p

Term nate

Sour ce
Li nes
Total: 133

Ent er - PF1- - - PF2- - - PF3
help retrn qu

Natural Construct CSUTESML
Singl e Modul e Test Program 04: 54 PM
*Model :

- Nunmber all subprograns to be executed

<—

|
|
_ dear : _ \%
_ Mwd 1. _ _Md 6: _
_ Mwd 22 _ _Md 7. _
_ Md 3 __ _ Md 8 __
_ ©Md 4 _Md 9 __
- _ Md 5 _ _ Md 10: __
_ Pregen: ___ ___ _ Save -
_ Documt: _ _ Postgn: __
Frame Paranmeter or Exit Nanme
_ Oher :
_ Oher :
_ Oher :
_ Oher :
- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
it mai

Single Module Test Program Panel
Other Submenu, NCST Model/Frame Related Subprograms Submenu

T

est NCST Generated Models Option

—433 -

Natural Construct Administration and Modeling User’s Manual

CSUTLATE Subprogram

CSUTLATE

Description

What it does

Parameters used

Files accessed

Translates message text at runtime.

This subprogram receives a message number and position
value and retrieves the appropriate text. If the message
text contains multiple items delimited by a slash (/), the
position value identifies which text is translated.

This subprogram is invoked from the CSUCURS and
CSUCURSI1 subprograms.

CSATLATE
CSASTD

SYSTEM-FUSER

—434 -

External Objects

CSUTRANS Subprogram

CSUTRANS

Description

What it does

Translates screen prompts before they are displayed.

This subprogram receives a defined data structure
(typically a translation LDA) containing SYSERR message
numbers and translates them into the appropriate text.
For more information about SYSERR message numbers,
see Using SYSERR References, page 496

CSUTRANS reads the supplied data structure, searching
for one of two message number patterns: *NNNN or
*NNNN.A, where *NNNN identifies the message number
and .A identifies a position within the message number. If
a message number of the type *NNNN is located, the entire
SYSERR message is retrieved. If a message number of type
*NNNN.A is located, the portion of the message
corresponding to the .A notation is retrieved. A message
number can have up to 15 positions: the values 1 to 9
represent the first nine positions, and the values A to F
represent the 10th to 15th positions.

To locate the text corresponding to a message number,
specify the library in which the SYSERR message numbers
and text reside. By default, CSUTRANS checks the
SYSERR message CSTLDA library. In most cases, you will
create your own SYSERR message library. If you do, enter
the library name in the #MESSAGE-LIBRARY field.

In addition to retrieving the appropriate language message
text, CSUTRANS searches for any formatting characters
and formats the text as appropriate. For more information
about formatting characters, see Formatting SYSERR
Message Text, page 503.

CSUTRANS requires a specific data structure. The
example on the following page shows the translation LDA
for the Standard Parameters panel for the Batch model:

—435-

Natural Construct Administration and Modeling User’s Manual

CSUTRANS Description (continued)

* * **SAG TRANSLATI ON LDA

* * * used by CTETRANS.

1 CTE- VAL
2 TEXT /* Corresponds to syserr nessage
3 #GEN- PROGRAM A 20 INIT< *2000.1,.'>
3 #SYSTEM A 20 INIT< *2000. 2, +' >
3 #GDA A 20 INIT<' *2000. 3, >' >
3 #TITLE A 20 INIT<' *2001.1, +/16' >
3 #DESCS A 20 INIT< *2001.2,.'>
3 #GDA- BLOCK A 20 INIT< *2001. 3,>' >
3 #MAP- HEADER1 A 20 INIT<' *2049.1,./18" >
3 #MAP- HEADER2 A 20 INIT<' *2049.2,>/18" >
3 #USE- M5G NR A 20 INIT< *2050.1,.'>
3 #PASSWORD- CHECK A 20 INIT<' *2050.2,./20" >
2 TEXT
3 TRANSLATI ON- TEXT
4 TEXT- ARRAY A 1 (1:200)
2 ADDI TI ONAL- PARMS
3 #MESSAGE- LI BRARY A 8 I NI T<' CSTLDA >
3 #LDA- NAME A 8 I NI T<' CTE- MAL' >
3 #TEXT- REQUI RED L I Nl T<TRUE>
I

3 #LENGTH- OVERRI DE

4 |* Length to translate

Other details about the structural elements include:

The first comment line (**SAG TRANSLATION LDA)
indicates that this is a translation LDA. During a static
install, Natural Construct scans for this comment line
and replaces the SYSERR numbers with the
appropriate text.

The CTE-MAL level 1 structure name is typically the
LDA name; use this qualifier whenever the variables
are accessed.

The level 3 variables (#GEN-PROGRAM, #SYSTEM,
#GDA, etc.) are screen prompts that are initialized with
avalid SYSERR number. All SYSERR numbers use the
*NNNN.A notation and are listed in sequential order.

—436 -

External Objects

CSUTRANS

Description (continued)

PDA used

File accessed

Note:

This sequence does not apply to positions after the period
within the *NNNN.A notation. For example, you can list
*2000.2 before *2001.1.

¢ The TEXT-ARRAY value must match the total number
of bytes in all prompt variables to be translated.

¢ The #MESSAGE-LIBRARY value indicates the
SYSERR library where the text is stored.

¢ The #TEXT-REQUIRED logical indicates whether
translation is required, If it is, this field ensures that
translation is performed only once.

CSATRANS
CSASTD

SYSTEM-FUSER

— 437 -

Natural Construct Administration and Modeling User’s Manual

Driver Menu Option

CTETRANS **x*xx Natural Related subprograns *****

Cct 21 - Driver for subprogram CSUTRANS - 1of 1

Transl ation LDA CTE-MAL

Input Parameters ... #GEN-PROGRAM *2000.1,._
#SYSTEM *2000.2, +___
#GDA *2000. 3, > ~
#TI TLE *2001. 1, +/ 16 _
#DESCS *2001. 2, . -
#GDA- BLOCK *2001. 3, > 3
#MAP- HEADERL *2049.1, . /18___ -
#MAP- HEADER2 *2049.2, >/18____ —
#USE- MBG- NR *2050. 1, . —
#PASSWORD- CHECK * 2050. 2, ./ 20 _
#MESSAGE- LI BRARY CSTLDA
#LDA- NAVE CTE- MAL_
#TEXT- REQUI RED X
#LENGTH-OVERRIDE __ 0

quit reset bkwrd frwd right left

hel p

Sample Driver for Subprogram CSUTRANS Window
Natural Submenu, Retrieve Application Error Messages
Retrieve Block Messages Option

This driver is provided as a sample only. Because the screen prompts that
will be translated by CSUTRANS vary depending on the application you
are developing, the driver must be tailored to the application.

Note:

—438 —

External Objects

CSUXCHK Subprogram

CSUXCHK Description

What it does Scans for the existence of a user exit in the edit buffer.

This subprogram receives the name of a user exit and scans
the edit buffer for that name.

PDA used CSAXCHK

Files accessed None

Driver Menu Option

CTEXCHK Natural Construct CTEXCHK1
Aug 14 Driver for subprogram CSUXCHK 1of 1

Read in New Source: _
*New Source Nane...: __ _
New Sour ce Library: DEVPR __

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSUXCHK Window
Other Submenu, User Exit Related Subprograms Submenu
Validate Format for Input Value Option

— 439 -

Natural Construct Administration and Modeling User’s Manual

CSU2LONG Subprogram

CSU2LONG Description

What it does Converts a long variable name to an abbreviation. This
subprogram receives a long character string (32
characters) and a desired length, and returns the
truncated string (abbreviation). The sixth position of the
string is the first position truncated. If no length is given,
the default is 30.

If the long string is not longer than the desired length, the
string is still truncated. For example, if the long string is
“THIS-IS-A-LONG-VARIABLE” and the desired length is
20, the short string is “THIS-A-LONG-VARIABLE”.

Note: Use this subprogram when you add characters to a file or
field name that is already 32 characters long.

PDA used CSA2LONG

Files accessed None

Driver Menu Option

CTE2LONG Natural Construct CTE2LNGL
Aug 14 Driver for subprogram CSU2LONG 1of 1
Long Name.....:

Maxi mum Length: __

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CSU2LONG Window, Other Submenu
General Utility Subprograms Submenu, Shorten a Long Variable Name Option

— 440 -

External Objects

Predict-Related Subprograms (CPU%*)

The subprograms described in this section retrieve information from the Predict
data dictionary. While some of these subprograms generate code, most supply in-
formation to the calling subprogram and the calling subprogram generates the
code.

Note: Ifyou use Software AG’s Net-Work, the Predict data can reside on a plat-
form other than the platform on which Natural Construct is running.

Driver programs for many of the supplied programs and subprograms are available
through the Driver menu option on the Administration main menu. If a driver pro-
gram is available, its location is listed in the Driver Menu Option section for the
program or subprogram.

For information about invoking the driver programs, see Drivers Menu Func-
tion, page 79.

With Natural Security Installed

If Natural Security is installed, the Predict-related subprograms restrict access to
file and field information. Users can only retrieve information for files linked to the
current application.

While generating a program, the program may access information about the same
file many times. To avoid security checks each time, the access subprograms use
the FILE-CODE field. This INPUT/OUTPUT field accesses file information and
acts as a cipher code to avoid multiple security checks on the same file; it is avail-
able for all supplied subprograms.

If you are developing under Natural Security, include the FILE-CODE field in the
model PDA for each file used multiple times during generation. The FILE-CODE
field is passed in the PDA of the access subprogram and reassigned back to the
model PDA after each call.

— 441 -

Natural Construct Administration and Modeling User’s Manual

Example of using the FILE-CODE field

To avoid security checks for each access, the model subprogram that invokes
CPUEL contains the following statements:

ASSI GN CPAEL. FI LE- CODE = #PDA- FI LE- CODE
CALLNAT ' CPUEL' CPAEL CSASTD
ASSI GN #PDA- FI LE- CODE = CPAEL. FI LE- CODE

Note: For an example of using these subprograms to restrict access to file and
field information, see the CUSCGPR program in the SYSCST library.

The following sections describe subprograms that retrieve information from
Predict.

— 442 —

External Objects

CPU-OBJ Subprogram

CPU-0OBJ

Description

What it does

PDAs used

Files accessed

Generates an external data area based on a Predict file
view. This subprogram receives the view name and a set of
logical variables that define the generation options. It
generates an external data area structure to match the
view. It can also generate the C# variables for each C*
variable that corresponds to an MU or PE and/or includes
the corresponding REDEFINE fields for redefined fields or
superdescriptors. For information about the INPUT/
OUTPUT parameters, see the CPA-OBJ parameter data
area in the SYSCST library.

CPA-OBJ
CSASTD

SYSDIC-EL
SYSDIC-FI

Driver Menu Option

CTE- OBJ
May 12

*File:

Natural Construct CTE- OBJ1
Driver for subprogram CPU- OBJ 1of 1

hel p

Bui | d Redefines..:
Super De Redefines: _
Cstars.......... :

Structure Level: _
Joi ned Fld Nane:
Joined Length..: _

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
retrn quit mai

Driver for Subprogram CPU-OBJ Window

Predict Submenu, Generate Data Areas Submenu, External Option

— 443 -

Natural Construct Administration and Modeling User’s Manual

CPU-OBJ2 Subprogram

CPU-OBJ2

Description

What it does

Parameters used

Files accessed

Issues CALLNAT to the #CALLNAT subprogram and
passes information about elements that make up an object.

This subprogram receives:

e aview name

¢ akeyname

* a set of options

¢ the name of a passed subprogram to CALLNAT

An object is derived from view and key names. The view
and key names are based on intra-object relationships
defined in Predict (for example, ORDER-HEADER-HAS-
ORDER-LINES).

The elements of an object are the individual fields in the
files that make up the object. This subprogram traverses
the object tree and checks each element. For each element,
it CALLNATS the #CALLNAT subprogram and passes it
information about the element (for example, the format,
length, and type).

You can set options to limit or extend the number of
elements to check (for example, whether to include all field
redefinitions or just the lowest levels).

This subprogram replaces CPU-OBJ; for all new
development, use CPU-OBJ2 instead of CPU-OBJ.

CPA-OBJ2
CPA-ODAT
CU--PDA
#PASS(A1/1:V)
CSASTD

SYSDIC

— 444 —

External Objects

CPU-OREL Subprogram
CPU-OREL Description
What it does Adds entity information to a table.

Parameters used

Files accessed

This subprogram receives the name of an object and
information about each entity belonging to the object. It
adds this information to a table. For more information, see
the CPA-OREL.ENTITY(*) parameter data area.
Optionally, it can display tracing information.

CPA-OREL
CU__PDA
CSASTD

SYSDIC-RL
SYSDIC-FI
SYSDIC-EL

— 445 -

Natural Construct Administration and Modeling User’s Manual

CPU-VIEW Subprogram
CPU-VIEW Description
What it does Generates field definitions based on the contents of a

PDAs used

Files accessed

Note:

Predict view.

This subprogram receives the name of a Predict view and a
set of logicals defining the options to be generated. It
generates the view definition as it should appear in the
DEFINE DATA . .. END-DEFINE block of a Natural
program, subprogram, or helproutine.

This subprogram differs from CPU-OBJ in that it
generates internal rather than external data structures.

This subprogram can also generate the C# variables for
each C* variable that corresponds to an MU (multiple-
valued) or PE (periodic group), and/or includes the
corresponding REDEFINE fields for redefined fields or
superdescriptors.

You can use this subprogram to define a structure based on
a view in Predict. The format and length for each field is
generated.

For more information about the INPUT/OUTPUT
parameters for this subprogram, see the CPA-VIEW
parameter data area in the SYSCST library.

CPA-VIEW
CSASTD

SYSDIC-EL
SYSDIC-FI

— 446 —

External Objects

Driver Menu Option

CTE- VI EW Natural Construct CTE- VEW
May 12 Driver for subprogram CPU-VI EW 1of 1
*File....:

View. ...: Gen 01 Level......:
Onit Fld

Variabl e I ndexes : _ Incl ude Hyper DE...: _ I ncl ude MJ Counter:
Build Redefines..: _ I ncl ude Phonetic DE _ I ncl ude PE Counter:
Super De Redefines: _ Include Sub DE.....: _ I ncl ude MJ Hyper. .:
Specify Formats..: _ I nclude Super DE...: _ I ncl ude PE Hyper..:
Cstars...........: Redefine Cstars....:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CPU-VIEW Window
Predict Submenu, Generate Data Areas Submenu, Internal Option

— 447 —

Natural Construct Administration and Modeling User’s Manual

CPUEL Subprogram

CPUEL Description

What it does Returns Predict information about a field in a file.

This subprogram finds a field in a Predict file and returns
information about the field.

PDAs used CPAEL
CSASTD
File accessed SYSDIC-EL

Driver Menu Option

CTEEL Natural Construct CTEEL11

Aug 14 Driver for subprogram CPUEL 1 of 2

*File Nanme..: DDM Prefix:

*Field Nane :

Si npl e Qutputs: _

FId Found...: Adabas Fld Nane: Fld Format....: Field Ug :

Ver Found...: Fld Length.....: Predict Fornat: De Type..:

Lvl Number. .: Sign...........: Suppression...: G Struct:

Qccurrences. : Fld Type.......: Al Descend.: Pe Ind...:
Fl d Redefined : Rank..........:

Edit Mask...: Fi el d Headi ngs:

DDM FI d Nane:

I ndex Nare. . :

FI d Sequence:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit left right nai

Driver for Subprogram CPUEL Window 1
Predict Submenu, Field Information Submenu, Single Field Option

— 448 —

External Objects

CTEEL Natural Construct CTEEL21
Aug 14 Driver for subprogram CPUEL 2 of 2
File Nare..:

Field Nare :

LEVEL

DDM Fi el d Nane Field Type I s Redefined

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit left right nai

Driver for Subprogram CPUEL Window 2
Predict Submenu, Field Information Submenu, Single Field Option

— 449 —

Natural Construct Administration and Modeling User’s Manual

CPUELDE Subprogram
CPUELDE Description
What it does Returns a description attribute from a specified file.

This subprogram receives the name of a file and finds a
description attribute. It returns the names of all fields that
have the DESCRIPTION keyword.

Parameters used CPAELDE
CSASTD
Files accessed SYSDIC-FI
SYSDIC-EL
SYSDIC-KY
CPUELKY Subprogram
CPUELKY Description
What it does Returns keywords linked to a field in a specified file.

Parameters used

Files accessed

This subprogram receives the name of a file and field; it
returns keywords linked to the field.

CPAELKY
CSASTD

SYSDIC-FI
SYSDIC-EL
SYSDIC-KY

—450 -

External Objects

CPU-FREL Subprogram
CPU-FREL Description
What it does Retrieves information about a foreign relationship and

Parameters used

Files accessed

CALLNATS a pass-through subprogram. This subprogram
passes CPA-FREL, CU--PDA, and CSASTD to the pass-
through subprogram.

CPARLRD
CU--PDA
CPA-FREL
CSASTD

SYSDIC-FI
SYSDIC-EL

— 451 -

Natural Construct Administration and Modeling User’s Manual

CPUELNX Subprogram
CPUELNX Description
What it does Returns field-by-field information if it is called repeatedly.

PDAs used

Files accessed

Note:

This subprogram receives the name of a Predict file, the
CPAELNX data area (contains options for field types), and
the CPRELNX data area (contains information about
current processing), and logically reads through the fields
in the file. For information about the INPUT/OUTPUT
parameters, see the CPAELNX parameter data area in the
SYSCST library.

CPRELNX contains reserved variables that keep track of
the current position; it must not be modified by the calling
program.

CPAELNX
CPRELNX
CSASTD

SYSDIC-EL
SYSDIC-FI

— 452 -

External Objects

Driver Menu Option

CTEELNX Natural Construct CTEENX11
Aug 14 Driver for subprogram CPUELNX 1 of 2
*File Nanme....: First Time : X EOF.....:
DM Prefix...: _

Redef Base Fld: _ Super Subs: _ Ms.......: _ Nulls Only : _ Counters: _
First Redefine: _ Phonetics : _ Pe Goups : _ Seq Only...: _ Goups..: _
Al Redefines : _ Hypers....: _ Pes.......: _ U Only....: _ Fillers : _
Max Rede Rank : _ Derived...: _ Ms in Pes: _ VE Only....: _ REDE STR
FId Name......: Fl d Type

FId Format....: Length.....:

Predi ct Format: Sign.......:

Adabas Nane. . .: Fld Def...: De Type...: Fld Count..: Rank. . :
Level Nunber..: Fld Ug....: Pe Ind....: Qceurrences:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit left right nai

Driver for Subprogram CPUELNX Window 1
Predict Submenu, Field Information Submenu, Get Next Field Option

— 453 -

Natural Construct Administration and Modeling User’s Manual

CTEELNX Natural Construct CTEENX21
Aug 14 Driver for subprogram CPUELNX 2 of 2

Fi el d Headi ngs

IMB Ofset....: Access Lvl:
IMB Fld Nane. .: Update Lvl:
IMB Fld Length

I ndex Nane..:

DDM FI d Nane:

Edit Mask...:

Level Type Trail: -> -> -> -> -> > ->

Redefine Trail..: -> -> -> -> -> -> ->

Fld i s Redefined: Redefine Cnt:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit left right nai

Driver for Subprogram CPUELNX Window 2
Predict Submenu, Field Information Submenu, Get Next Field Option

— 454 —

External Objects

CPUELRD Subprogram
CPUELRD Description
What it does Reads through the fields in a Predict file, issues a

PDAs used

File accessed

Note:

CALLNAT for the specified subprogram for each field, and
passes information about the field to the subprogram.

This subprogram receives:

¢ the name of a file

¢ the name of a subprogram to CALLNAT

¢ the selection criteria (in CPAELRD.INPUTS)

The subprogram traverses the specified file. For each
selected field, it CALLNATS the passed subprogram to
process the current field (for an example, see the
CPUELRD Subprogram, page 455).

CPAELRD

CU--PDA (model PDA)

CSAPASS (redefined as required)
CSASTD

The CSAPASS parameter data area can be redefined as
required and used to store additional information that
must be preserved between CALLNATS.

SYSDIC-EL

— 455 —

Natural Construct Administration and Modeling User’s Manual

Driver Menu Option

CTEELRD
Aug 14

ReDe Base Fld:
First ReDe...:
Al ReDe.....:

FI d Name
DDM Fi el d

I ndex. ... :
Headi ngs

Edit Mask :
Type Trail:
ReDe Trail:

Natural Construct CTEELRD1
Driver for subprogram CPUELRD 1of 1
Fld Count......:
Ll Level:
...: CTELRDSM Max Rede Rank..: _
_ SPs/SBs..: _ Pes...: _ Pe Goup: _ Only VE..: _ Fillers:
_ Phonetics: _ Mus...: _ Muin Pe: _ Only UQ.: _ Derived:
_ Hypers...: _ Goups: _ Counters: _ Only Null: _ Rede St:
Format : PRD For mat
Fld UQ : Length.....:
Type. . .: Adabas Nane:
De Type: Cccurrences
Pe Type: :
Rank. . .:
Redef . .: ReDe Count

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit bkwd frwd mai

Driver for Subprogram CPUELRD Window

Predict Submenu, Field Information Submenu

CALLNAT For Each Field in a File Option

— 456 —

External Objects

CPUELVE Subprogram

CPUELVE Description

What it does Returns the verification rule names for a field in a file.

This subprogram finds a field in Predict and returns the
names of the verification rules of type N (Natural

Construct).
PDAs used CPAELVE

CSASTD
File accessed SYSDIC-EL

Driver Menu Option

CTEELVE Natural Construct CTEELVE1
Aug 14 Driver for subprogram CPUELVE 1of 1
*File Nane : Field Found.........:
*Field Nane: Num of Verifications:

B T +

| 1 VERI FI CATI ON NAVE |

| o |

| |

| |

| |

| |

| |

B L TR +
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1

help retrn quit bkwd frwd mai

Driver for Subprogram CPUELVE Window
Predict Submenu, Field Information Submenu
Get Verification Rule Names Option

— 457 -

Natural Construct Administration and Modeling User’s Manual

CPUEXIST Subprogram

CPUEXIST Description

What it does Verifies the existence of a specified Predict object.

This subprogram receives the name and type of an object

and verifies its existence in Predict.

PDAs used CPAEXIST
CSASTD

Files accessed SYSDIC-SY
SYSDIC-PR
SYSDIC-KY
SYSDIC-DB
SYSDIC-FI
SYSDIC-RL
SYSDIC-UE

Driver Menu Option

CTEXI ST Natural Construct CTEXST1
Aug 14 Driver for subprogram CPUEXI ST 1of 1
bj ect Nane: bj ect Exists:

Cbj ect Type: __ (SY, PR KY, FI, DB, R., VE)

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CPUEXIST Window
Predict Submenu, Verify Object Existence Option

— 458 -

External Objects

CPUFI Subprogram

CPUFI Description

What it does Returns Predict information about a file.

This subprogram receives the name of a file and returns
Predict information about that file.

PDAs used CPAFI
CSASTD
File accessed SYSDIC-FI

Driver Menu Option

CTEFI Natural Construct CTEFI 1
Aug 14 Driver for subprogram CPUFI 1of 1
*Fil e Name: Ripp File Nr..:
File Type: Ext File Nr..:

Master File Nane..:
Primary Seq Field :

DDM Prefix........: |

DB Nunber.: 00
DDM File Nane.....: Fi

VB
Ms le Level:
Ms
%S
Ms

| i
IMB Parent File...: | File Nr...: 00
| MB Root File Nane: | Seg Type..:
| VB DBD Nane......: | DDM Suf fi x:
IMB Seg Nane......: DDM Mat ches. . . :

IMB Root Seg Name :

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CPUFI Window
Predict Submenu, File Information Option

— 459 —

Natural Construct Administration and Modeling User’s Manual

CPUHOLD Subprogram

CPUHOLD

Description

What it does

Determines the hold field for a file.

This subprogram receives the name of a file and
determines the hold field for the file. To define a hold field,
attach the HOLD-FIELD keyword to the field in Predict.

Parameters used CPAHOLD
CSASTD
Files accessed SYSDIC-FI
SYSDIC-EL
CPUKY Subprogram
CPUKY Description
What it does Retrieves information related to a Predict keyword.

Parameters used

Files accessed

You can use the keyword comments to store attribute
values that can be returned by this subprogram.

CPAKY
CSASTD

SYSDIC-KY
SYSDIC-EL

— 460 —

External Objects

CPUREDEF Subprogram

CPUREDEF Description

What it does Generates redefinitions for compound keys,
superdescriptors, or redefined fields in Predict. This
subprogram invokes the CPUXPAND subprogram, which
retrieves the components of the field to be redefined.
Redefinitions can be generated in either inline or external
data area format.

PDAs used CPAREDEF
CSASTD
File accessed SYSDIC-EL

Driver Menu Option

CTEREDEF Natural Construct CTERDEF1
Aug 14 Driver for subprogram CPUREDEF 1of 1
*File : Redef Level.........: _
*Field: Change Format Nto A1 _

Super Options

Include Deriv Level: _ I nsi de Hi stogram
I ncl ude Redef Level: _ Ont Format..... :

Resets Required:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CPUREDEF Window, Predict Submenu,
Field Information Submenu, Generate Field Redefinition Option

—461 -

Natural Construct Administration and Modeling User’s Manual

CPURL Subprogram

CPURL Description

What it does Returns information about a relationship in Predict.

This subprogram receives a Predict relationship name and
returns information about the relationship.

PDAs used CPARL
CSASTD
File accessed SYSDIC-RL

Driver Menu Option

CTERL Natural Construct CTERL1
Aug 14 Driver for subprogram CPURL 1of 1
*Rel ati onshi p Nane: Rel ati onshi p Found:
Rel ati onship Type :
Rel ationship File Rel ati onship Field Card
Ddm Rel ationship Field M ni mum Aver age Maxi mum
Constraint Type Upd: Db2 Constraint Nane:

Constraint Type Del:
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CPURL Window
Predict Submenu, Relationship Information Option

—462 —

External Objects

CPURLRD Subprogram

CPURLRD

Description

What it does

PDAs used

Files accessed

Note:

Retrieves the Predict relationships for a specified file, and
optionally a specified type.

This subprogram receives:

¢ the name of a file

e arelationship type (optional)

¢ the name of a subprogram (in CPARLRD.INPUTS)

It finds relationships for the specified file, issues a
CALLNAT to the specified subprogram, and passes the
information about the relationship to the subprogram for
processing.

CPARLRD

CU--SYSLIBSPDA (model PDA)
CSAPASS (redefined as required)
CSASTD

The CSAPASS parameter data area can be redefined as
required and used to store additional information that
must be preserved between CALLNATS.

SYSDIC-FI
SYSDIC-KL

— 463 -

Natural Construct Administration and Modeling User’s Manual

Driver Menu Option

CTERLRD Natural Construct CTERLRD1
Aug 14 Driver for subprogram CPURLRD 1of 1

*CALLNAT...............: CTELRDSM
Rel ationship Count....:
Rel ationship Nane.....:
Rel ationship File:
Rel ationship Field....:
DDM Rel ati onshi p Field:
Cardinality...........:
Mnimum..............:
Average...............:
Maximum:
DB2 Constraint Nanme...:
Constraint Type Upd...:
Constraint Type Del...:
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10-
help retrn quit

Driver for Subprogram CPURLRD Window
Predict Submenu, CALLNAT for Each Relationship Option

— 464 —

External Objects

CPUSUPER Subprogram

CPUSUPER Description

What it does Returns the definition for a super/subdescriptor (or DB2
compound key). This subprogram receives the name of a
superdescriptor or subdescriptor (or DB2 compound key)
and the name of the Predict file or table to which it belongs.
It returns information about the derived fields.

PDAs used CPASUPER
CSASTD
File accessed SYSDIC-EL

Driver Menu Option

CTESUPER **xxx Predict Related Subprogranms ***** CTESUPR1
Oct 09 - Driver for subprogram CPUSUPER - 03: 08 PM
*File Nane : Superde Length....:
*Fi el d Nane: Superde Fornmat....:

Cont ai ns Repeating Fiel ds: C#Derivation G oup:
g
| 1 Start End A Fld Sup PE Di mensi on

| Source Field Nane Char Char D Typ Opt Ind 1 2 3

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit bkwd frwd mai

Driver for Subprogram CPUSUPER Window
Predict Submenu, Field Information Submenu
Expand Superde or Redefine Option

— 465 —

Natural Construct Administration and Modeling User’s Manual

CPUUNIQ Subprogram
CPUUNIQ Description
What it does Determines the unique description field (primary key).

This subprogram receives the name of a file and
determines the unique description field (primary key) for
the file.

PDAs used CPAUNIQ
CSASTD

Files accessed SYSDIC-FI
SYSDIC-EL

CPUVE Subprogram

CPUVE Description

What it does Prints verification rules to the source buffer.
This subprogram prints either the code or the data
definition for a type N (Natural Construct) verification rule
to the source buffer.

PDAs used CPAVE
CSASTD

Files accessed

SYSDIC-VE-ACT

— 466 —

External Objects

Driver Menu Option

CTEVE Natural Construct CTEVEL
Aug 14 Driver for subprogram CPUVE 1of 1
Verification Nane: Verification Found:
*User View Nane...: Rul e Generated....:

*DDM Fi el d Nane. . .:

Cenerate Data....:
Cccurrences.:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit mai

Driver for Subprogram CPUVE Window
Predict Submenu, Field Information Submenu
Generate Verification Rules Option

— 467 —

Natural Construct Administration and Modeling User’s Manual

CPUVERUL Subprogram
CPUVERUL Description
What it does Returns information about Predict verification rules.

Parameters used

Files accessed

CPAVERUL
CSASTD

SYSDIC-VE

CPUXPAND Subprogram

CPUXPAND Description
What it does Expands a super/subdescriptor or redefined field.
This subprogram receives:
¢ the name of a super/subdescriptor (or DB2 compound
key)
e the name of the Predict file (or table) to which the key
belongs
¢ the expansion options
¢ the name of a subprogram to CALLNAT (in
CPAXPAND.INPUTS)
¢ the parameters in the model PDA (CU--PDA)
¢ an additional A1/1:v parameter (CSAPASS)
It expands the specified super/subdescriptor (or DB2
compound key) into its underlying components. For each
component, it CALLNATS the specified subprogram.
Note: When this subprogram expands a superdescriptor,

redefinitions of the derived fields for the superdescriptor
are included.

— 468 -

External Objects

CPUXPAND Description (continued)
PDAs used CPAXPAND

CU--PDA

CSAPASS

CSASTD
File accessed SYSDIC-EL

Driver Menu Option

CTEXPAND Natural Construct CTEXPN11
Aug 14 Driver for subprogram CPUXPAND 1 of 3
*File Nanme......: Phantom Bytes: _
*Base Fi el d Nane: Fillers......: _
*CALLNAT.: CTELRDSM P

Base Field Infornmation Fi el d Headi ngs

Sequence: Adabas Fi el d Nare:

Format . . : Field Definition :

Length. .: Field Type.......:

Edit Mask......:

DDM Field Nane :

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit left right nai

Driver for Subprogram CPUXPAND Window 1
Predict Submenu, Field Information Submenu
CALLNAT For Sup/Subde Components Option

—469 —

Natural Construct Administration and Modeling User’s Manual

CTEXPAND Natural Construct CTEXPN21
Aug 14 Driver for subprogram CPUXPAND 2 of 3
Derived Field Infornation Fi el d Headi ngs

Fi rst Showi ng. :

Field Count...:

Whol e Field...:

Sequence.: Adabas Fi el d Nane: Start Character:
Format........: Field Definition : End Char acter:
Length........: Field Type.......:

Edit Mask.....:

Field Name....:

DDM Fi el d Nane:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit left right nai
Scrol ling perforned

Driver for Subprogram CPUXPAND Window 2
Predict Submenu, Field Information Submenu
CALLNAT For Sup/Subde Components Option

— 470 -

External Objects

CTEXPAND Natural Construct CTEXPN31
Aug 14 Driver for subprogram CPUXPAND 3 of 3

Ascendi ng/ Descendi ng
Expanded Fi el d I nformation Fi el d Headi ngs

Field Count..:
Ofset Start..:
O fset End....:

Sequence.: Predict Format...: Speci al characteristic:
Format........: Field Definition :

DDM Fi el d Nane:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF1
help retrn quit left right nai
Scrol ling perforned

Driver for Subprogram CPUXPAND Window 3
Predict Submenu, Field Information Submenu
CALLNAT For Sup/Subde Components Option

—471 -

Natural Construct Administration and Modeling User’s Manual

Predict-Related Helproutines (CPH™*)

You can attach the following helproutines to fields that require the input of Predict
information. They are active helproutines that fill the field to which they are

attached.

Note: Some of the following routines provide help information, although they
are coded as subprograms and not as helproutines. This provides greater
flexibility to access help information.

CPHEL Subprogram

CPHEL

Description

What it does

Attached to

Parameters used

File accessed

Browses the fields in a file for selection.

This subprogram receives the name of a Predict file. (If no
file name is specified, it provides file selection.) It browses
all the fields in the specified file and returns the selected
field.

Input of a Predict field name.

CPAHEL
CSASTD

SYSDIC-FI

—472 -

External Objects

CPHELB Subprogram

CPHELB Description

What it does Browses the fields in a file for selection. This subprogram
receives the name of a file and browses all the fields in the
file for selection. Optionally, this subprogram can browse
only the descriptor fields.
For more information about the INPUT/OUTPUT
parameters for this subprogram, see the CPHELBA data
area in the SYSCST library.

PDAs used CPAHEL
CSASTD

File accessed SYSDIC-EL

CPHFI Helproutine

CPHFI Description

What it does Browses Predict views/files for selection.
This helproutine browses all the views and files in Predict
for selection.

Attached to Input of a Predict file name.

Parameter used

Files accessed

#PDA-FILE(A32)
SYSDIC-FI

— 473 -

Natural Construct Administration and Modeling User’s Manual

CPHFIB Subprogram

CPHFIB Description

What it does Browses Predict views and files for selection.

Parameters used #PDA-KEY(A32)
CSASTD

File accessed SYSDIC-FI

CPHPRED Helproutine

CPHPRED Description

What it does Browses Predict objects (by object type) for selection. This
helproutine receives an object type and browses the Predict
objects of the specified type for selection. Valid object types
are:
e S (system)
e P (program)
e K (keyword)
¢ M (module)
¢ R (report)

Attached to Input of a Predict object type.

Parameters used

Files accessed

#PDA-TYPE(A1)
#PDA-KEY(A32)

SYSDIC-SY
SYSDIC-PR
SYSDIC-KY
SYSDIC-RE
SYSDIC-MO

— 474 -

External Objects

CPHRL Helproutine

CPHRL Description

What it does Browses the names of Predict relationships for selection.
This helproutine receives the names of a Predict
relationship and a file and returns the selected
relationship. If a file name is specified, the helproutine
browses only the Predict relationships for that file. If no
file name is specified, it browses all existing relationships.

Attached to Input of a Predict relationship name.

Parameters used

Files accessed

#PDA-FILE(A32)
#PDA-RELATIONSHIP-NAME(A32)

SYSDIC-FI
SYSDIC-RL

CPHSET Helproutine

CPHSET

Description

What it does

Attached to

Parameter used

Sets a flag to indicate that help was requested for a field.
This helproutine receives the name of a parameter and sets
a flag to indicate help was requested. The parameter
should be checked after the INPUT statement. If a flag is
set, for example, reset the flag and issue CALLNATS to do
the necessary help processing.

This technique allows the helproutine to access all data
entered in a single panel transaction. When you generate a
browse subprogram, for example, you can type the file
name (without pressing Enter) on the Additional
Parameters panel and request help for a field.

Any input field
#PDA-SET-HELP(L)

— 475 -

Natural Construct Administration and Modeling User’s Manual

CPHSET Description
Files accessed SYSDIC-FI
SYSDIC-RL

Natural Construct General Purpose Generation
Subprograms (CU--*)

The subprograms described in this section are general purpose generation subpro-
grams. These subprograms are identified by a CU-- prefix.

CU--EM Subprogram
CU--EM Description
What it does Returns edit masks used by the generated programs for

displaying date and time fields.

This subprogram can be changed to suit your standards.
Changes to this routine should be made in a higher level
steplib to minimize maintenance. The date and time field
edit masks should not be longer than nine characters
unless you modify your models.

Parameters used CU--EMA

— 476 -

External Objects

CU--LRP Subprogram
CU--LRP Description
What it does Returns the left and right prompt displayed on the Natural

Parameters used

Construct panels. The left prompt displays the current
month and day in *DATX (EM=LLL”DD), which can be
language sensitive. The right prompt displays the “1 of 17
or “1 of 3” panel indicators, depending on the number of
panels. This prompt uses several Control record fields to
build the prompt position indicators, which are compressed
on both sides of the “of” indicator.

#PDA-LEFT-PROMPT(A9)
#PDA-LEFT-INDICATOR(A4)
#PDA-RIGHT-PROMPT-OF(A4)
#PDA-RIGHT-INDICATOR(A4)
#PDA-RIGHT-PROMPT(A9)
CSASTD

— 477 -

Natural Construct Administration and Modeling User’s Manual

CU--MSG Subprogram
CU--MSG Description
What it does Returns the text for an application error message. This

Parameters used

File accessed

generation subprogram is suitable for use in a code frame.
It takes a single, literal string parameter and generates
source into the source buffer.

This subprogram receives a message number in the #PDA-
FRAME-PARM alpha field. After ensuring that this literal
is numeric, the subprogram retrieves the short message for
the SYSTEM application and the *Language variable. The
error message is written (left-justified and enclosed in
single quotes) to the source buffer, thus substituting for the
frame parameter. The usual search criteria and defaults
(English) apply.

The following example shows a typical code frame:

USE- M5G- NR 1
ASSI GN MG | NFO. ##M5G- NR = 8123 "
ELSE 1
ASSI GN MSG- | NFO. ##M5G = "
SUBPROGRAM CU- - MSG PARAM 8123 N "

CU--PDA
CSASTD

Application error message file.

— 478 -

External Objects

CU--UL Subprogram
CU--UL Description
What it does Returns the underscore line used on the Natural Construct

Parameters used

panels.

This subprogram receives an underscore character set and
creates the underscore line. The underscore character(s)
specified on the Control record (an A4 field) is duplicated to
fill the A80 length.

#PDA-UNDERSCORE(A4)
#PDA-UNDERSCORE-LINE(AS80)
CSASTD

— 479 -

Natural Construct Administration and Modeling User’s Manual

— 480 —

UTILITIES

This chapter describes the utilities supplied with Natural Construct for all sup-
ported platforms.

The following topics are covered:
¢ Introduction, page 482
¢« Import and Export Utilities, page 483
¢« Frame Hardcopy Utility, page 486
¢« Comparison Utilities, page 487
¢ Upper Case Translation Utility, page 491
¢ Additional Utilities, page 492

—481 -

Natural Construct Administration and Modeling User’s Manual

Introduction

The following sections describe the utilities supplied with Natural Construct for all
supported platforms. To invoke a utility, enter its name at the Next prompt (in the
Direct Command box for Unix).

Mainframe Note:
When a description refers to “your print file,” it refers to Print File 1.

Unix Note:
When a description refers to “your print file,” it refers to DEVICE LPT1.

— 482 -

Utilities

Import and Export Utilities

This section explains how to transfer data across dissimilar platforms (for example,
from Unix to mainframe).

Natural Construct’s import and export utilities read and write their data from and
to work file 1. This is true for each of the following utilities:

Utility Described in

CSFLOAD Natural Construct Administration and Modeling User’s
CSFUNLD Manual

CSHLOAD Natural Construct Help Text User’s Manual
CSHUNLD

CSMLOAD Natural Construct Generation User’s Manual
CSMUNLD

A work file written on one platform (such as Unix) can be read by another platform
(such as mainframe) if the following conditions are met:

¢ You must be running Natural Construct version 3.3.1 or higher. Only a work file
created using this version can be transferred between platforms. The work file
must be an ASCII file. For example:

Platform How to save as an ASCII file

Mainframe Define work file 1 as a PC file and activate PC Connection

before running the utility. (PC Connection translates from
EBCDIC to ASCIIL.)

Unix Set the work file specification in your NATPARM to any
extension other than “SAG”.

¢ When transferring the work file between platforms, select the appropriate transla-
tor. For example, the file transfer method you select to move a file from a PC to a
Unix machine must translate the PC’s CR/LFs to CRs.

— 483 -

Natural Construct Administration and Modeling User’s Manual

Multiple Code Frame Export Utility

The CSFUNLD frame export utility exports selected code frames from the code
frame file to work file 1. A report of the exported code frames is written to your
print file.

Enter each code frame name one name at a time. As you enter the names, they are
automatically displayed on the panel.

For each exported code frame, you can specify whether to export its recursive (nest-
ed) code frames — if any exist. To export recursive code frames, mark the Include
recursive code frames field. If you do not want to export recursive code frames,
leave the field blank.

Examples of input values

Value entered Results

* Exports all code frames to work file 1.

MENU X Exports the “MENU” code frame including any recursive
(nested) code frames to work file 1.

FM* Exports all code frames beginning with “FM” to work file 1.

Enter a period (.) to terminate the input.

— 484 —

Utilities

Multiple Code Frame Import Utility

The CSFLOAD frame import utility allows you to import selected code frames from
work file 1 to the code frame file. A report of the imported code frames is written to
your print file.

Enter each code frame name one name at a time. As you enter the names, they are
automatically displayed on the panel.

Use the Replace Option field to replace the existing code frames with code frames
with the same names in work file 1. To replace the existing code frames, mark the
field. If you do not want to replace the existing code frames, leave the field blank.

Examples of input values

Value entered Results

* Imports all code frames from work file 1. If a code frame with
the same name exists in the code frame file, it is not replaced.

MENU Imports the “MENU” code frame from work file 1. If the
“MENU” code frame exists in the code frame file, it is not
replaced.

MENU X Imports the “MENU” code frame from work file 1. If the

“MENU” code frame exists in the code frame file, it is replaced.

FM* Imports all code frames beginning with “FM” from work file 1.
If a code frame with the same name exists in the code frame
file, it is not replaced.

Enter a period (.) to terminate the input.

— 485 -

Natural Construct Administration and Modeling User’s Manual

Frame Hardcopy Utility

The CSFHCOPY frame hardcopy utility allows you to print a hardcopy list of your
code frames, regardless of your teleprocessing monitor. All output is routed to your
print file.

Enter each code frame name one name at a time. As you enter the names, they are
automatically displayed on the panel.

Examples of input values

Value entered Results

* Routes all code frames to your print file.
MENU Routes the “MENU” code frame to your print file.
FM* Routes all code frames beginning with “FM” to your print file.

Enter a period (.) to terminate the input.

— 486 —

Utilities

Comparison Utilities

The following sections describe utilities you can use to compare two Natural source
modules and to compare a range of models in different libraries.

CSGCMPS Utility

This program compares two Natural source modules. You can compare either:
¢ the contents of two saved modules
or

¢ the contents of the module currently in the source buffer to the contents of a saved
module

Specify the library ID, module name, database ID, and file number for each module
you want to compare. In addition, you can specify the following options:

e ignore comment lines

¢ ignore trailing comments
e ignore leading spaces

¢ provide summary only

When you invoke the CSGCMPS utility online, the following window is displayed:

Conpare Oriteria
Library Object Dat abase File or Source Area

ad d version ===> CST411M_ CSGCMPS_ 017 029
New version ===> CST411M CSGCMPS_ 017 029

Options. ..
I gnore coment lines......
lgnore trailing coments. .
I gnore | eadi ng spaces.....
Summary only.............. _
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF1

Compare Criteria Window

— 487 -

Natural Construct Administration and Modeling User’s Manual

CSGCMPL Utility

This program compares a range of modules in one library to the same modules in
another library. Specify the library ID, database ID, file number, and range value
for the modules you want to compare. In addition, you can specify the following
options:

e summary only

¢ only report if different

e ignore comment lines

e ignore trailing comments
¢ ignore leading spaces

¢ only compare object types

Using CSGCMPL Online
When you invoke the CSGCMPL utility online, the following window is displayed:
Sour ce Range Conpare Facility
Library Database File Doninant
adlibrary............... _17 29 X
New Library............... _17 29 _
Programrange............. thru __ -
Summary only.............. _
Only report if different.. _
Ignore conment lines...... _
Ignore trailing coments.. _
I gnore |eading spaces..... _
Only conpare object types (ACGHLMNPST)

Source Range Compare Facility Window

The Dominant field indicates the range of modules to be compared. Only modules
that exist in the dominant library and in the other specified library are included in
the compare results. Modules that only exist in the non-dominant library are not
included.

— 488 —

Utilities

The Only compare object types field limits the comparison to modules of a specified
object type. Valid object types are:

Object Type Description

Parameter
Copycode

Global data area
Helproutine

Local data area

Map

Subprogram
Parameter data area

Subroutine

H »n " Z 2 &5 B @ a »

Text

Using CSGCMPL in Batch

Batch mode is the most efficient method of comparing many modules. The follow-
ing SYSIN shows an example of using this utility in batch:

LOGON CST421M
CSGCWPL ALD- LI B, 001, 002, X, NEW LI B, 003,004, ,BEG N, END, S,D, C, T, L, NPH
FI'N

where:

O.D-LIB Indicates the name of a library containing modules to be
compared.

001 Indicates the database ID for OLD- LI B.

002 Indicates the system file number for OLD- LI B.

— 489 —

Natural Construct Administration and Modeling User’s Manual

NEW LI B

003

004

bl ank

BEG N

END

NPH

Indicates that the OLD- LI B is dominant (all modules in the
dominant library are compared to any matching modules in the
other specified library).

Indicates the name of a library containing modules to be
compared.

Indicates the database ID for NEW LI B.
Indicates the system file number for NEW LI B.

If blank, indicates that OLD- LI B is dominant. If X, indicates
that NEW LI B is dominant.

Indicates the name of the first module in the range compared.
Indicates the name of the last module in the range compared.
Indicates a summary report (does not display detailed
differences). This option displays the names of the modules and
whether the module contents are the same in both libraries.
Indicates that only modules that are different are included on
the output report. Modules that are identical in both libraries

are not included.

Indicates that Natural comment lines (lines beginning with “*”
or “/*”) are not compared.

Indicates that trailing comments (comments beginning with “/
*”) are not compared.

Indicates that leading spaces are not compared (changes in
alignment will not show up as differences).

Indicates the list of Natural object types compared within the
specified range of modules.

— 490 -

Utilities

Upper Case Translation Utility

If you are developing applications in a language that does not support lower case
Latin characters, use the supplied CVUPPERC utility to convert the Natural Con-
struct components to upper case. This utility converts all Natural Construct-
installed SYSERR message text and source code, as well as the contents of the Nat-
ural Construct system file, to upper case. Since this conversion requires a
significant amount of processing, only run this utility in a batch environment.

Note: Before running this utility, ensure that the batch job defines the correct
Natural Construct logical file, FUSER system file, and FNAT system file.

You can use the following SYSIN to invoke the CVUPPERC utility:

LOGON SYSCST
CVUPPERC
FI'N

After converting the components to upper case, this utility issues a CATALL in the
SYSCST library. To reflect the changes in your production environment, manually
transfer all modules from the SYSCST library to the SYSLIBS library after the
modules have been cataloged.

—491 -

Natural Construct Administration and Modeling User’s Manual

Additional Utilities

This section describes additional utilities you can use. Each utility is listed in the
following table along with a brief description. For more details about any of these
utilities, see Utilities in Natural Construct Generation User’s Manual.

Description

Utility Command
INCLUDE Code CSUINCL
Insertion

JCL Submit CSUSUB
(mainframe)

Multiple NCSTBGEN
Generation

Upper Case CSUPPER
Translation

Inserts all INCLUDE members into a program.
Use this utility to aid in the debugging process
by making hidden INCLUDE members display
in a program.

Submits the contents of the source buffer to the
internal reader. This utility requires the
availability of the NATRJE module.

Regenerates multiple Natural modules using
their corresponding Natural Construct models.

Translates the contents of the source buffer
into upper case. Optionally, you can translate
any combination of the following elements in
the source buffer: comments, statements, or
quoted strings.

—-492 —

USING SYSERR REFERENCES FOR
MULTILINGUAL SUPPORT

This chapter describes how Natural Construct uses the Natural SYSERR utility to
dynamically translate text and messages. SYSERR contains reference numbers
that reference text strings in one or more languages.

The following topics are covered:
¢ Introduction, page 494
¢ Defining SYSERR References, page 495
 Using SYSERR References, page 496
¢ Supported Areas in Natural Construct, page 505
e CSUTRANS Utility, page 507
¢ CNUMSG Utility, page 511
¢ One Language (Static) Mode, page 514

—493 -

Natural Construct Administration and Modeling User’s Manual

Introduction

Natural Construct supports the dynamic translation of text and messages on many
model specification panels. Instead of typing text for panel headings, field prompts,
error messages, etc. You can use a SYSERR reference number. At runtime, the ref-
erence number is replaced with its corresponding SYSERR text.

Maintenance

Using SYSERR references reduces your maintenance efforts. To modify a field
prompt used on many panels, for example, you can change the text in SYSERR and
all fields that use that number display the new name at runtime. It also helps
maintain consistency throughout your generated applications, by ensuring that
the same text is displayed in multiple locations.

Translation

For each SYSERR reference number, you can define message text in other languag-
es. At runtime, text for the currently-selected language (the current value of the
*Language system variable) is retrieved.

The text on all Natural Construct panels can be dynamically translated into any
Natural-supported language.

Note: Ifyou only require one language, this feature can be disabled during in-
stallation. For more information, see One Language (Static) Mode,
page 514.

The default language for Natural Construct is English (*Language 1), which is al-
ways supported. Check with your local Software AG office to ensure that your
language is supported.

—494 —

Using SYSERR References for Multilingual Support

Defining SYSERR References

Each SYSERR reference number can have up to 15 distinct text entries — each one
separated by a (/) slash delimiter. For information about setting up reference num-
bers, see SYSERR Utility in the Natural Utilities Manual.

To use SYSERR reference numbers in Natural Construct, the reference must fol-
low a pattern where the first character is an * (asterisk) and the next four digits
represent a valid SYSERR reference number. For example:

* NNNN

where * indicates the currently specified SYSERR message library and NNNN rep-
resents a valid reference number.

To identify one of the 15 possible positions within a SYSERR reference number, use
the following notation:

*NNNN. A

where A is a number from 1-9 or a letter from A—F. The numbers 1-9 represent the
first nine positions and the letters A—F represent the 10th to 15th positions. For
example, to reference the fifteenth position within a reference number, specify:

* NNNN. F

Note: We recommend that you always specify a position value, even if there is
only one occupied position in the reference number. This eliminates the
need to modify SYSERR references if additional positions are occupied in
the future.

—495 -

Natural Construct Administration and Modeling User’s Manual

Using SYSERR References

You can use SYSERR reference numbers in several ways, such as:
e on maps (screen prompts)
e for panel headings and PF-key names
e in messages
e for text translation
¢ with substitution values

All text members, excluding the help text members, reside within the SYSERR
utility. Each text member is identified by a two-part key — a SYSERR library
name and a four-digit number.

For more information about SYSERR, see the Natural SYSERR utility documen-
tation. For information about using SYSERR references for help text, see the
Using Message Numbers, page 32, in Natural Construct Help Text User’s
Manual.

On Maps (Screen Prompts)

To display panels in many languages, Natural Construct uses a single map ap-
proach. Variables for all screen prompts are defined and initialized in a translation
local data area (LDA) associated with each map.

Translation LDAs initialize the screen prompts with SYSERR references for the
dynamic translation version or constants for the static version. All supplied LDAs
use SYSERR references by default, but you can change this if desired. For more in-
formation about dynamic and static installations, see Natural Construct
Installation and Operations Manual for Mainframes.

The one-to-one association between a map and its translation LDA is an effective
method for naming and tracking panels and their prompts. Each supplied map and
its translation LDA have identical names — except for the last character. The last
character in a map name is “0” (zero) and the last character in a translation LDA
name is “L.”. For example, the second specification panel for the Menu model is
CUMNMBO and the translation LDA is CUMNMBI.

— 496 —

Using SYSERR References for Multilingual Support

Screen prompts are typically translated prior to displaying a panel, and panels
usually have more than one prompt. For this reason, Natural Construct uses the
CSUTRANS utility to receive a block of text and translate all references numbers.
The CSTLDA library in SYSERR is Natural Construct’s dedicated library and con-
tains all language-independent prompt text.

For more information, see CSUTRANS Utility, page 507.

For Panel Headings and PF-Key Names

Note: When we refer to panel headings and PF-key names, we are referring to
the Natural Construct panels and PF-keys and not those used by the gen-
erated applications.

You define and maintain panel headings and PF-key names in the Administration
subsystem: the first heading for a model specification panel on the Maintain Mod-
els panel and the PF-key settings on the Natural Construct Control record.

If desired, you can use the CST-Modify model to generate a model modify subpro-
gram to override these defaults. Modify subprograms reference the #i EADER1
and #HEADER2 internal variables to display panel headings. If these headings are
not overridden by the model modify subprograms, Natural Construct automatical-
ly uses the defaults supplied by the nucleus (in the CU—PDA.#HEADER1 and
CU—PDA .#HEADER2 variables). For more information about overriding panel
headings, see Standard Parameters Panel, page 233.

All Natural Construct panel headings and PF-key names support text or SYSERR
references (the *NNNN.A notations). For example, to name a PF-key “main” on the
Control record, enter one of the following:

e “*0033.5” (which corresponds to “main” in SYSERR)
¢ “main” (which disables the dynamic translation feature)

All heading and PF-key text is saved in the same SYSERR library as the prompt
text (CSTLDA).

— 497 -

Natural Construct Administration and Modeling User’s Manual

In Messages

All Natural Construct messages also support dynamic translation. Messages have
action properties (verbs), whereas screen prompts have descriptive properties (ad-
jectives). For this reason, the message and prompt text is stored in separate
SYSERR libraries and use separate translation utilities:

¢ Messages are stored and maintained in the CSTMSG library and are accessed via
the CNUMSG single message utility.

¢ Screen prompts are stored and maintained in the CSTLDA library and are access-
ed via the CSUTRANS utility.

If you change the supplied screen prompt text, ensure that the screen prompt and
message text are consistent. If the message text references a different SYSERR
number than the screen prompt, the message may be confusing.

With modules for which source is not supplied, Natural Construct uses the text
substitution feature supported by the CNUMSG utility (where :1::2::3: are place
holders for potential substitution values). For example, if the screen prompt is
“Module” and the message is “:1::2::3:is required”, the message is displayed as:
“Module is required.”

This message substitution feature provides many benefits, including:
¢ consistent use of panel and message text
¢ reuse of common messages, such as “is required”
¢ reduced volume of message translation
¢ consistent wording between modules
e support for a cleaner and crisper look
The following example shows a typical message and how it is coded:

ASSI GN CNAMSG. MSG- DATA(1) = CU-MNAL. #GEN- PROGRAM
| NCLUDE CURMSG ' 2001'

10 2::3tis required !

' #PDA- PROGRAM NAME'
This assignment transfers the contents of the corresponding prompt variable into
the first (of a possible three) substitution data member: CNAMSG.MSG-DATA(1).
The members are then transferred into an INCLUDE member that calls the
CNUMSG utility.

—498 —

Using SYSERR References for Multilingual Support

In the preceding code example, CU—MAL is the translation LDA for the CU—MAOQ
map and CU—MAL. #GEN-PROGRAM is the prompt variable containing the ini-
tialized text (either “Module” or the SYSERR number that references “Module”).
The 2001 on the INCLUDE line represents the SYSERR reference number that
points to the message: “:1::2::3:is required”. The “:1::2::3:is required” text below the
INCLUDE code is used as an internal default should the text not be found.

You can use the Natural Construct messaging infrastructure to override the mes-
sage lookup and force the CNUMSG utility to disregard the SYSERR reference
number and use the text (:1::2::3:is required) instead. This feature is useful during
model development because you can enter message text in the source code or test
the code without calling the SYSERR utility. To do this for a single module, add a
single line before the previous code example as follows:

ASSI GN CNAMSG | NSTALL- LANGUAGE = * LANGUAGE

To do this for an application, change the initial value for the CNAMSG.INSTALL-
LANGUAGE variable and recompile all the Natural Construct model
subprograms.

The following INCLUDE code members all retrieve message text, but process the
text in different ways:

INCLUDE Code Member Description

INCLUDE CU—RMSG Retrieves and displays messages on current panel.

INCLUDE CU—SERR Retrieves and sets error code messages and then
exits current module.

INCLUDE CU—-GMSG Retrieves messages and continues processing
(typically used for warning messages).

INCLUDE CU—GTXT Retrieves messages and continues processing, but
does not transfer the text to the CSASTD structure
(typically used to perform initializations without
corrupting the messaging data in CSASTD).

— 499 -

Natural Construct Administration and Modeling User’s Manual

For Text Translation

You can translate text in one of two ways: mass translation from within the SY-
SERR utility or context translation from within Natural Construct, which uses the
SYSERR utility to store text for all supported *Language values. English is the de-
fault language; it is always supplied and supported.

Since translation is typically performed once shortly after installation (or not at all
if the product is delivered with the text translated), Natural Construct provides a
special translation mode that is invoked via a command you can secure. This com-
mand, MENUT, invokes the Administration subsystem in translation mode with
all translatable prompts and headings highlighted for easy identification.

Mass Translation

All Natural Construct text is available in SYSERR. The combination of the SY-
SERR library name and a four-digit number is the unique key or pointer to a
particular text member. For example, the “:1::2::3:is required” message is stored in
the CSTMSG library and its four-digit number is 2001; the “Module” screen prompt
is stored in the CSTLDA library and its four-digit number is 1000.

Within SYSERR, you can translate many messages one after the other (mass
translation). This mechanism is fine for messages where the context is not critical.
For example, the “:1::2::3:is required” message is universal and used frequently by
all types of modules.

Screen prompts are more context sensitive; they may belong in a particular group
or depend on a heading for meaning. To translate screen prompts, it is a good idea
to perform a mass translation first and then check each panel individually for con-
text. This is the most efficient way to translate a large number of text members, as
the mass translation can be accomplished by less experienced Natural Construct
users or a translation service.

- 500 -

Using SYSERR References for Multilingual Support

Context Translation

Natural Construct’s context (cursor-sensitive) translation provides a simple but ef-
fective method to check or change the results of a mass translation. It allows you
to display a panel, place your cursor on highlighted text, press Enter, and be pre-
sented with a window in which you can change or translate the text:

CSUTLATE Nat ural Construct
Jul 04 Transl ate Short Message 1 of 1

Language Short Message (CSTLDA2101)
R N N FITTL~JNUIE JNDIPIEC AR VR SN SN S P SN R 3

English Modul e/ Model / Maps | +20

Translate Short Message Window

This feature is even more convenient on a PC using Entire Connection, in which
case you can double-click any prompt to perform the translation.

Note: You can also use the context translation mechanism to perform the origi-
nal translation (instead of mass translation).

Note: Because messages are displayed one at a time, they do not require context
translation.

Since translation is typically performed once shortly after installation (or not at all
if the product is delivered with the text translated), Natural Construct provides a
translation mode command that you can secure. This command, MENUT, invokes
the Administration subsystem in translation mode with all translatable prompts
and headings highlighted for easy identification.

-501 -

Natural Construct Administration and Modeling User’s Manual

Unlike messages, which all use the same byte length, screen prompts vary in
length depending on panel design and available space. For performance and space
considerations, multiple screen prompts may share the same SYSERR location.
For example, SYSERR number 2000 corresponds to the following text:

CSTLDA2000 Modul e/ System G obal data area [+20

CSTLDAZ2000 indicates the SYSERR library and the four-digit number that iden-
tifies the values: Module, System, and Global data area (delimited by a “/).
Decimal numbers indicate which text is retrieved (2000.1 for Module, 2000.2 for
System, and 2000.3 for Global data area). Since prompts can be different lengths,
the /+20 notation indicates that each of these prompts can occupy up to 20 bytes on
any panel they are used.

With Substitution Values

Substitution values are additional data that can be displayed with message text at
runtime. For example, you can specify that Menu (the substitution value) be dis-
played with Main (the message text). The actual substitution value can be either
text or another reference number. Most areas in Natural Construct that support
reference numbers also support data substitution. (For information about support-
ed areas, see Supported Areas in Natural Construct, page 505.

To use substitution values with a reference number, the reference number must be
defined in the SYSERR utility with the :1::2::3: place holders. For more informa-
tion, see Statements — REINPUT in the Natural Reference Manual.

To specify substitution values for a reference number that contains place holders,
type the reference number (FNNNN.A format), followed by a comma (,) delimiter,
and up to three substitution values. For example, if you enter:

0200. 1, Menu, Model

where 0200. 1 corresponds to the message text, :1::2::3:Program, and Menu and Md-
el are the substitution values.

At runtime, the following text is displayed:
Menu Model Program
In this example, Menu replaced the first place holder and Model replaced the second.

-502 -

Using SYSERR References for Multilingual Support

Note: Ifno substitution values are defined, the place holders are ignored.

You can enter text, or reference numbers, or both as substitution values. For exam-
ple, if you enter:

0200. 1, Menu, 0502. 4

where Menu is the first substitution value and 0502. 4 is the second substitution val-
ue (which corresponds to the message text, “Model”)

At runtime, the following message is displayed:

Menu Model Program

Formatting SYSERR Message Text

In some areas where SYSERR references can be used, you can specify how the re-
trieved message text is formatted at runtime. The following table describes the
available formatting characters:

Character Description

, Separates the *NNNN.A notation from the format characters.
Fills the remaining blanks with periods.
+ Centers the retrieved text.

< Left-justifies the retrieved text. Typically, you will not use this
character because retrieved text is left-justified by default.

> Right-justifies the retrieved text.

- 503 -

Natural Construct Administration and Modeling User’s Manual

Character Description (continued)

/ Indicates the end of format characters and the beginning of the
field length override. For example, “+/30” indicates that the first 30
characters of returned text are centered. Any additional characters
are truncated. This character is used with alignment characters
(such as +, <, or >).

NN Indicates the field length override value. Using the example above
(+/30), the field length override is 30 characters.

The following examples show different methods of formatting the text for SYSERR
reference number 0210.1 (which references the text, “Field Help”):

Format Specified Result

*0210.1,+/24 Centers text in 24 bytes. At runtime, text is displayed as:

| Field Hel p |
*0210.1,>/24 Right-justifies text. At runtime, text is displayed as:

| Field Help|
*0210.1,/24 or Left-justifies text (the default). At runtime, text is
*0210.1,</24 displayed as:

| Field Hel p |
*0210.1,./24 Left-justifies text and fills the remaining blank spaces with

periods. At runtime, text is displayed as:

[Field Hel Do |

- 504 -

Using SYSERR References for Multilingual Support

Supported Areas in Natural Construct

The following table lists the areas where you can use SYSERR references. The Sub-
stitutions column indicates whether substitution values are supported for the
corresponding panel and the Formatting column indicates whether formatting is
supported. For information about substitution values, see With Substitution
Values, page 502. For information about formatting, see Formatting SYSERR
Message Text, page 503.

Location Substitutions? Formatting?

Maintain Control Record panel:
¢ PF-key names No No
¢ Indicators No No

Maintain Models panel:
¢ Description Yes No

Maintain Subprogram panel:

¢ Description Yes No

¢ PF-key names No No

CST-Modify

Standard Parameters panel:

e Header1 Yes Text centering only
e Header 2 Yes Text centering only
¢ PF-key names No No

Translation local data areas (LDAs):

e CNUMSG utility Yes Partial support

¢« CSUTRANS utility Yes Yes

Help Text editor:

e Header1 Yes No

e Header 2 Yes No

¢ Hotlinks Yes No

¢ Body of help text Yes Yes

- 505 -

Natural Construct Administration and Modeling User’s Manual

The following table lists the chapters where you can find more information about
each of the Natural Construct functions and utilities in which SYSERR reference

numbers are supported:

To Learn More About

See

Maintain Control Record panel

Maintain Models panel
Maintain Subprogram panel
CST-Modify

Standard Parameters panel

Translation LDA utilities
(CNUMSG and CSUTRANS)

Help Text editor

Maintain Control Record
Function, page 62

Maintain Models Function, page 48

Maintain Subprograms Function,
page 61

Parameters for the CST-Modify
Model, page 240

CNUMSG Subprogram, page 366,
CNUMSG Utility, page 511,
CSUTRANS Subprogram, page 435,
CSUTRANS Utility, page 507

Help Text Editor, page 63, Natural
Construct Help Text User’s Manual

- 506 —

Using SYSERR References for Multilingual Support

CSUTRANS Utility

Natural Construct translates screen prompts before they are displayed. As most
panels have multiple prompts, Natural Construct incorporates the CSUTRANS
utility to receive a block of text and translate all references to SYSERR numbers
into the appropriate *Language text.

CSUTRANS translates 1:V data structures and is used extensively for dynamic
translation. The utility reads through a supplied local data area, looking for one of
two patterns: *NNNN or *NNNN.A.

The *NNNN pattern returns all text for that SYSERR number, whereas the
*NNNN.A pattern returns only the text in the specified position (delimited by a /,
such as *NNNN.1 for the first position, *NNNN.2 for the second, *NNNN.A for the
10th, etc.). The extension in the *NNNN.A pattern is alphanumeric; valid values
range from 1-9 and A-F, for a total of 15 possible positions.

To retrieve a valid message, you must also specify the SYSERR library name
(CSTLDA, by default). To change the library name, use the #MESSAGE-LIBRARY
variable.

You can also use SYSERR numbers to assign the INIT values for fields in the trans-
lation LDAs. These LDAs are passed through the CSUTRANS utility, which
expects a certain data structure. The example on the following page illustrates this
structure for the Standard Parameters panel for the Batch model:

*** SAG TRANSLATI ON LDA
***used by map CUBAMAO.

1 CUBAMAL
2 TEXT /* Corresponds to SYSERR nessage
3 #CGEN PROGRAM A 20 INIT<' *2000.1,.'>
3 #SYSTEM A 20 INIT<' *2000. 3,."'>
3 #CGDA A 20 INIT< *2000.2,."'>
3 #TI TLE A 20 INIT< *2001.3,.'>
3 #DESCRI PTI ON A 20 INIT< *2001.2,.'>
3 #GDA- BLOCK A 20 INIT< *2001.1,.'>
R 2 TEXT
3 TRANSLATI ON- TEXT
4 TEXT- ARRAY A 1 (1:120)
2 ADDI Tl ONAL- PARVS
3 #MESSAGE- LI BRARY A 8 I NI T<' CSTLDA' >
3 #LDA- NAME A 8 | NI T<' CUBAMAL' >
3 #TEXT- REQUI RED L I NI T<TRUE>
3 #LENGTH OVERRI DE | 4 |/* Explicit length to translate

- 507 -

Natural Construct Administration and Modeling User’s Manual

Some of the important structural elements in this LDA are:

The first comment line (**SAG TRANSLATION LDA) indicates that this is a trans-
lation LDA. During a Static install, Natural Construct scans for this comment line
and replaces the SYSERR numbers with the appropriate text

The CUBAMAL level 1 structure name is typically the LDA name. You should use
this qualifier to reference the variables

The level 3 variables #GEN-PROGRAM, #SYSTEM, #GDA-BLOCK, etc.) are the
screen prompts, which are initialized with a SYSERR number. All SYSERR num-
bers use the *NNNN.A notation and are listed in sequential order (so that

CSUTRANS does not retrieve SYSERR #2000, then *2001, and then #2000 again).

Note: The sequence order does not apply to the *NNNN.A notation extensions
(.A). For example, you can list *2000.2 before *2001.1.

The TEXT-ARRAY value must match the total number of bytes in all screen
prompt variables to be translated

The #MESSAGE-LIBRARY value indicates the SYSERR library name used to re-
trieve text

The #TEXT-REQUIRED logical variable indicates whether translation is required
for Natural Construct modules. If translation is required, #TEXT-REQUIRED en-
sures that translation is only performed once.

- 508 —

Using SYSERR References for Multilingual Support

The SYSERR INIT values have the following format:

Position

Format

Byte 1
Bytes 2-5

Note:

Byte 6

Byte 7

Note:

Must be an asterisk (¥).

Must be numeric and represent a valid SYSERR number. The
first five bytes are mandatory. These values are used to
retrieve the text associated with the corresponding SYSERR
number and the current value of *Language.

If the text for the current language is not available,
CSUTRANS follows a modifiable hierarchy of *Language
values until text is retrieved (you define this hierarchy in the
DEFAULT-LANGUAGE field within the CNAMSG local data
area). As the original development language, English
(*Language 1) should always be available.

CSUTRANS does not perform substitutions (using :1::2::3:). To
perform substitutions, call the CNUMSG subprogram.

Can be a period (.), which indicates that the next byte is a
position value.

Can be a position value. Valid values are 1-9, A (byte 10), B
(byte 11), C (byte 12), D (byte 13), E (byte 14), F (byte 15), and
G (byte 16). For example, *2000.2 identifies the text for
SYSERR number 2000, position 2 (as delimited by a / in
SYSERR). If the message for SYSERR number 2000 is Module/
System/Global data area, only System is retrieved.

If you reference the same SYSERR number more than once in
a translation LDA, define the INIT values on consecutive lines
to reduce the number of calls to SYSERR. The position values
for a SYSERR number can be referenced in any order.

To minimize confusion, we recommend that you use the .A
extension even when there is only one position defined for the
SYSERR number.

- 509 -

Natural Construct Administration and Modeling User’s Manual

Position

Format (continued)

Byte 8

Note:

Byte 9

. (period)

Bytes 10-16

Can be a comma (,), which indicates that the next byte or bytes
contain special format characters. Values specified before the
comma (,) indicate what text to retrieve; values specified after
the comma indicate how the text is displayed.

Although you can use a comma in byte 6 (instead of a period),
use the .A extension in bytes 6 and 7.

After the comma, can be one of the following:

Indicates that the first position after the field name is blank
and the remainder of the field prompt is filled with periods
(Module:, for example).

Indicates that the text is centered using the specified field
length override (see description of Byte 10). If you do not
specify the override length, Natural Construct uses the actual
field length.

Indicates that the text is left-justified (this is the default).
Indicates that the text is right-justified.

Indicates that a length override value follows. This character
is placed after the alignment character (+,< or >)

After the / override length indicator (see above), indicates the
actual override length in bytes.

If you want to use the override length notation (*0200.4,+/6, for example) and the
LDA field is too small (A6, for example), define a larger field, redefine it using a
shorter display value, and then use the override length notation. For example:

01 #FI ELD- NAME

A 12 | NI T<' *0200. 4+/ 6' >

01 Redefine #FI ELD- NAMVE
02 #SHORT- FI ELD- NAME A 6

-510 -

Using SYSERR References for Multilingual Support

CNUMSG Utility

Unlike CSUTRANS, the CNUMSG utility only retrieves text for one message at a
time. It is typically used to retrieve warning or error messages, and sometimes to
retrieve text for initialization.

The CNUMSG utility retrieves message text in one of two ways. If a reference num-
ber is specified (CNAMSG.MSG-NR), CNUMSG uses that number to retrieve the

SYSERR message text. If a reference number is not specified, CNUMSG checks the
message text (CNAMSG.MSG) for the *NNNN or *NNNN.A notation and uses the

specified notation to retrieve the SYSERR message text.

CNUMSG can also substitute values in the text it retrieves (up to a maximum of
three substitution values). CNUMSG retrieves the message from SYSERR and
checks to see if the message has any substitution place holders. If it does, then the
substitution text data members (CNAMSG.MSG-DATA(*)) are substituted into the
appropriate place holder. If the data member is another SYSERR reference, it is
retrieved and substituted. All unused substitution place holders are removed. By
default, CNUMSG uses the CSTMSG SYSERR library for messages and the CSTL-
DA SYSERR library for substitution data fields.

Examples of using the CNUMSG utility

For the following examples, assume you want to create the message: “ADD Action
Description is required” and the available SYSERR numbers and text are:

SYSERR Number SYSERR Library SYSERR Text

*2001 CSTMSG :1::2::3:1s required
*1116.1 CSTLDA Action/Subprogram
*1117.1 CSTLDA Description

—-511 -

Natural Construct Administration and Modeling User’s Manual

Example 1: Typical text retrieval

ASSI GN #DESCRI PTI ON ="*1117.1". .. /* Variable with a SYSERR
ref erence

ASSI GN CNAMSG. MSG- DATA(1) = "ADD'/* Hardcoded text

ASSI GN CNAMSG. MSG- DATA(2) = "*1116. 1" /* SYSERR Ref erence

ASSI GN CNAMSG. MSG- DATA(3) #DESCRI PTION /* Variable reference

| NCLUDE CU-G\VBG "2001"
trre1::02::300s required”

[U T T T}

Example 2: Text retrieval using a comma as the delimiter

ASSI GN CNAMSG MSG = "*2001, ADD, *1116. 1, *1117. 1"
| NCLUDE CU-&vsG " "
trre1::02::300s required”

Both of these examples build the same message. Example 1 is the preferred method
because it is much more explicit. The method in Example 2 is useful when only the
message text is available and the input must be entered in one field, such as the
description, header, or title fields.

Note: Example 2 also supports centering. If you specify +/NN in your message
text, CNUMSG uses the NN value as the centering length and removes
the remainder of the text (the ,+/NN pattern).

-512 -

Using SYSERR References for Multilingual Support

To perform a desired function, CNUMSG can also be called with a method. Natural
Construct supports the following methods:

Method

Description

R

blank

Retrieve the SYSERR message as is without any text substitution.
This method is good for cases where substitutions are not desirable
and the :1::2::3: place holders should be left intact (for example,
when generating a call to CNUMSG itself).

Substitute the data into the :1::2::3: place holders without
retrieving the main message text. For example, you may have a
text string created programmatically to which you want to apply
substitutions. This method only substitutes the available (passed)
data into the place holders. Unused place holders are removed.

Retrieve the message text and perform the substitutions. This is
the most commonly-used method and is the default setting when
the method is blank.

If the method is blank, the default is B.

All other method settings will return a fatal error without performing any actions.

-513 -

Natural Construct Administration and Modeling User’s Manual

One Language (Static) Mode

If you intend to operate Natural Construct in one language only and do not require
dynamic translation, you can replace all SYSERR references with text when Nat-
ural Construct is installed. During installation, Natural Construct provides a

Static option that retrieves and replaces the *NNNN references with the appropri-
ate *Language text.(Before using the Static option, check with your local Software
AG office to ensure that your language is supported. English is always supported.)

The Static option does not replace every SYSERR reference with text; it only re-
places SYSERR references in the most frequently used modules. The following
table describes the areas affected and the replacements made:

Area

Replacements

Screen prompts

Translation
LDAs

Headings and
PF-key names

Messages

Help text

In all translation LDAs for which source is supplied (CU
prefix), the Static option replaces references with text. (To
identify a translation LDA, Natural Construct checks the
first comment line for **SAG TRANSLATION LDA.)

For the most frequently used translation LDAs for which
source is not supplied, you can generate subprograms and
static text LDAs (for information, see Natural Construct
Installation and Operations Manual for Mainframes).

For all panel headings and PF-key names (which are
installed with SYSERR references), you have the option of
replacing the references with text.

Dynamically translated at runtime (since messages are
only displayed during an error or warning condition).

Dynamically displayed at runtime (displayed on request).

Natural Construct can also use the English text supplied with each INCLUDE code
member and bypass the SYSERR retrieval process (see In Messages, page 498).

~514 -

APPENDIX — GLOSSARY OF TERMS

The following terms are used throughout this manual:

Term

Definition

Browse program

Browse a file

Code frame

Constant

Copycode

Cursor-sensitive or
Cursor sensitivity

Data area

Enter

Execute

Program that retrieves records from a specified file and
allows users to select a record for processing. Sometimes
referred to as a query program.

View the records in a specified file.

Block of code that performs a specified function. A code
frame is the basic element of a model,; it is a skeleton
outline of the code generated by the model.

Value that is always the same.

Static code that is provided for you to copy and use in
INCLUDE statements.

Created by moving the cursor at an item and pressing
Enter. If you are using PC Connection to access Natural
Construct, you can double-click with the mouse to select.

Natural module in which data is stored. For example, a
parameter data area stores parameters that are passed
between subprograms, and a global data area stores data
that is used by all programs in an application.

Type a value in a field and press Enter (or Return).

Start or display a program, menu, panel, editor, utility, etc.
Also referred to as “invoke”.

-515 -

Natural Construct Administration and Modeling User’s Manual

Term Definition (continued)

Field Area in a window or on a panel that either displays
information or requires the user to add information.

Function Menu option, for example, the Maintain Models function
on the Administration main menu.

Helproutine Natural module that displays a help panel.
Invoke See “Execute”.
Mark a field Type any non-blank character in the field.

Note: You may also be required to press the Enter key.

Model Natural Construct template used to record specifications
and generate source code into a Natural buffer.

Module Any object that is generated by Natural Construct.

Object Any entity that represents a business function and is used
by Natural Construct.

Optional field Field for which information is optional rather than
required.

Panel Screen or map on which parameters may be specified.

Parameter Value for a field.

PF-key Program function key. To perform the associated function,

press that key. For example, pressing PF1 (help) displays
help information.

Program Block of code that performs a function, for example, a
subprogram, subroutine, helproutine, etc. Also referred to
as a module.

Query program See “Browse program”.

Required field Field for which input is required.

- 516 -

Appendix — Glossary of Terms

Term

Definition (continued)

Return code

Scroll

Specify

Subprogram

Subroutine

Substitution
parameters

Terminate

User exit

Utility

Variable

Window

Code you enter on a menu to return to the previous panel.
The return code on Natural Construct menus is a period (.)

Move forward (down), backward (up), left, or right through
the information displayed on a panel or in a window.

Supply a value for an input field, for example, by typing a
value in the field and pressing the Enter key or by marking
the field.

Self-contained block of code that is called via parameters
by a program to perform a function.

Block of code (within a larger block of code) that is
referenced one or more times. A subroutine is typically
used to perform repetitive tasks or to isolate a specific task.

Parameters that always have the same format and
different values at generation time.

End your Natural Construct session.

Area in the program code that is reserved for user-defined
functions. In these areas, users can change the generated
functions for their own requirements. User exit code is
preserved when the program is regenerated.

Program supplied to perform a specific function, for
example, the model load utility.

Value that represents one of many possible values. The
actual value can be supplied by Natural when the program
is executed or supplied by other variables (either user-
supplied or derived).

Separate, self-contained area displayed on a panel (for
example, a help window).

- 517 -

Natural Construct Administration and Modeling User’s Manual

—-518 -

INDEX

Symbols

#HEADER1

internal variable, 497
#HEADER2

internal variable, 497
#PDA variables

assigning, 258
#PDA-AVAILABLER fields

CU--PDA parameter data area, 155
#PDA-AVAILABLEn-NAME fields

CU--PDA parameter data area, 154
#PDA-BACKWARD field

CU--PDA parameter data area, 155
#PDA-BACKWARD-NAME field

CU--PDA parameter data area, 154
#PDA-FORWARD field

CU--PDA parameter data area, 155
#PDA-FORWARD-NAME field

CU--PDA parameter data area, 154
#PDA-FRAME-PARM field

invoking generation subprograms,

171
#PDA-HELP field

CU--PDA parameter data area, 155
#PDA-HELP-NAME field

CU--PDA parameter data area, 154
#PDA-LEFT field

CU--PDA parameter data area, 155
#PDA-LEFT-MORE-PROMPT field

CU--PDA parameter data area, 152

-519 -

#PDA-LEFT-NAME field

CU--PDA parameter data area, 154
#PDA-MAIN field

CU--PDA parameter data area, 155
#PDA-MAIN-NAME field

CU--PDA parameter data area, 154
#PDA-PF-AVAILABLE fields (1/2/3)

CU--PDA parameter data area, 156
#PDA-PF-BACKWARD field

CU--PDA parameter data area, 156
#PDA-PF-FORWARD field

CU--PDA parameter data area, 156
#PDA-PF-HELP field

CU--PDA parameter data area, 156
#PDA-PF-LEFT field

CU--PDA parameter data area, 156
#PDA-PF-MAIN field

CU--PDA parameter data area, 156
#PDA-PF-QUIT field

CU--PDA parameter data area, 156
#PDA-PF-RETURN field

CU--PDA parameter data area, 156
#PDA-PF-RIGHT field

CU--PDA parameter data area, 156
#PDA-PF-TEST field

CU--PDA parameter data area, 156
#PDA-QUIT field

CU--PDA parameter data area, 155
#PDA-QUIT-NAME field

CU--PDA parameter data area, 154
#PDA-RETURN field

CU--PDA parameter data area, 155

Natural Construct Administration and Modeling User’s Manual

#PDA-RETURN-NAME field
CU--PDA parameter data area, 154
#PDA-RIGHT field
CU--PDA parameter data area, 155
#PDA-RIGHT-MORE-PROMPT field
CU--PDA parameter data area, 152
#PDA-RIGHT-NAME field
CU--PDA parameter data area, 154
#PDA-TEST field
CU--PDA parameter data area, 155
#PDA-TEST-NAME field
CU--PDA parameter data area, 154
& (ampersand) character
identifying substitution parameters,
127
* (asterisk)
displaying help, 40
* edit command
Code Frame editor, 112
*Language hierarchy
defining for CSUTRANS utility, 165,
509
*Language variable
implementing multilingual support,
80, 494
++ edit command
Code Frame editor, 112
+H edit command
Code Frame editor, 112
+nnnn edit command
Code Frame editor, 112
+P edit command
Code Frame editor, 112
. (period)
terminating Natural Construct, 36
. edit command
Code Frame editor, 111

-520 -

.C(nn) line command
Code Frame editor, 107

.CX(nn) line command
Code Frame editor, 107

.CX-Y(nn) line command
Code Frame editor, 108

.CY(nn) line command
Code Frame editor, 108

.D(nn) line command
Code Frame editor, 108

.E line command
Code Frame editor, 108

.G line command
Code Frame editor, 108

I line command
Code Frame editor, 108

IF line command
Code Frame editor, 108

.L line command
Code Frame editor, 108

.MX line command
Code Frame editor, 108

.MX-Y line command
Code Frame editor, 109

.MY line command
Code Frame editor, 109

.N line command

Code Frame editor, 109, 112

.P line command
Code Frame editor, 109

.W(nn) line command

Code Frame editor, 109
X line command

Code Frame editor, 109
.Y line command

Code Frame editor, 109

> prompt (command line)
Code Frame editor, 103

Index

? (question mark)
displaying help, 36
indicating nested code frames, 129
used in code frame names, 55

A

ABS field
Code Frame editor, 103

Act field

Frame Compare Facility panel, 77
Add

message text, 41

ADD edit command

Code Frame editor, 110
Additional Parameters panel

CST-Document model, 279
ADDITIONAL-INITIALIZATIONS user
exit

description, 305

example, 305
ADDITIONAL-SUBSTITUTION-
VALUES user exit

description, 305

example, 306
ADDITIONAL-TRANSLATIONS user
exits

description, 308

example, 308
Administration main menu

displaying

PF12 (main), 36
Drivers Menu function, 349
invoking
translation mode, 30
translation mode, 80

-521 -

Administration subsystem

invoking

translation mode, 30

AFTER-INPUT user exit

description, 309

example, 309
AFTER-INVOKE-SUBPANELS user
exit

description, 310

example, 310
Alphanumeric fields

changing format and length, 402

converting to another format/length,

402

CST-PDA model, 218

Ampersand (&) character
identifying substitution parameters,
127
Application library
CSTAPPL, 341
Array fields
validating, 286
Arrays
sorting 2-dimensional, 429
ASSIGN-DERIVED-VALUES user exit
description, 310
example, 311
Asterisk (*)
displaying help, 40
exporting a range of code frames, 484
loading a range of frames, 485
printing a range of code frames, 486
Attributes
returning description, 450
Auto save numbers field
Maintain Current Editor Profile
window, 114

Natural Construct Administration and Modeling User’s Manual

B

B type line

Code Frame editor, 105
BEFORE-CHECK-ERROR user exit

description, 312

example, 312
BEFORE-INPUT user exit

description, 312

example, 313
BEFORE-INVOKE-SUBPANELS user
exit

description, 314

example, 314
BEFORE-REINPUT-MESSAGE user
exit

description, 314

example, 314
BEFORE-STANDARD-KEY-CHECK
user exit

description, 315

example, 315
Blank line type

Code Frame editor, 106
BOTTOM edit command

Code Frame editor, 112
Browse a file

glossary definition, 515
Browse program

glossary definition, 515

C

C field
Code Frame editor, 106

Callback functions, 352

- 522 -

CALLNAT
issuing for each field in Predict file,
456
issuing to #CALLNAT subprogram,
444

Case
converting source buffer into upper,
422
converting text string to another, 383
CHANGE edit command
Code Frame editor, 110
used with ABS field, 103

CHANGE-HISTORY user exit
description, 315
example, 315
Checks
generating referential integrity, 424
CLEAR edit command
Code Frame editor, 110

Clear specification field
Maintain Models panel, 52

Clear subprogram
creating for a new model, 208
defining model defaults, 92
description, 174
example, 174, 220
generating, 219-220
PROVIDE-DEFAULT-VALUES user
exit, 92
when invoked, 174

CNAEL parameter data area
CNUEL subprogram, 355

CNAEL.INPUTS field
CNUEL subprogram, 355
CNAEL.OUTPUTS field
CNUEL subprogram, 355
CNAELNX parameter data area
CNUELNX subprogram, 357
CNAEXIST parameter data area
CNUEXIST subprogram, 360

Index

CNAGDABL parameter data area
CNUGDABL subprogram, 361
CNAGDAEL parameter data area
CNUGDAEL subprogram, 362
CNAGENDA parameter data area
CNUGENDA subprogram, 363
CNAMSG local data area
defining *Language hierarchy, 165,
509
CNAMSG parameter data area
CNUMSG subprogram, 368
CNAPEXST parameter data area
CNUPEXST subprogram, 370
CNASEL parameter data area
CNUSEL subprogram, 371
CNASRCNX parameter data area
CNUSRCNX subprogram, 372
CNASRCRD parameter data area
CNUSRCRD subprogram, 373
CNHMDL helproutine
browsing models for selection, 375
CNHMSG helproutine
displaying application message text,
376
CNHOBJ helproutine
browsing objects in current library,
377
CNRELNX parameter data area
CNUELNX subprogram, 357
CNRGENDA parameter data area
CNUGENDA subprogram, 363
CNRSRCNX parameter data area
CNUSRCNX subprogram, 372
CNUGDAEL subprogram
verifying field in GDA, 362
CNUGENDA subprogram
adding field to data area, 363

- 523 -

CNUMPPRF subprogram
reading map profile from system file,
364

CNUMSG subprogram
returning application message text,
366, 511

CNUMSG utility
retrieving text for one message, 511
CNUPEXST subprogram

checking for existence of map profile,
370

CNUSEL subprogram
selecting fields from data areas, 371

CNUSRCNX subprogram
returning next line of source, 372

CNUSRCRD subprogram
reading source text, 373

Code field
Single Module Test Program panel,
179

Code frame
glossary definition, 515

Code Frame Compare Utility panel
PF5 (top), 75
PF6 (hcopy), 76

Code frame conditions
example, 135, 137

Code Frame editor
adding a user exit point, 133
description, 43, 103
edit commands, 110
edit commands not supported, 58
line commands, 107
order of command execution, 107
passing DEFINE and INIT
parameters

example, 171

scrolling, 112
valid condition levels, 106

Natural Construct Administration and Modeling User’s Manual

Code Frame field
Code Frame editor, 103

Code Frame menu
Clear Edit Buffer function, 60
description, 57

Print Saved Code Frame function, 61

Purge Code Frame function, 60

Code frame name field
Maintain User Exit window, 133
Code frame(s) field
Maintain Models panel, 51
Code frames
adding a user exit point, 132-133
comparing
Compare Frames panel, 72
comparing different, 73
comparing in different files, 76
comparing in two models, 78
creating, 58
conditions for a new model, 195
for a new model, 193
editing, 58
exporting, 484
exporting nested, 484
importing, 485
modifying, 338
nested, 55
example, 131
line types, 105
printing hardcopy, 486
purging from file, 60
retrieving model parameters and
conditions, 398
supplying parameters
generation subprograms, 128
nested code frames, 129
supplying values for substitution
parameters, 264

Column field

Window Parameters window, 246
Command blocks

generating delimiters for, 384
Command line (> prompt)

Code Frame editor, 103, 110
Comment end indicator field

Maintain Models panel, 51
Comment start indicator field

Maintain Models panel, 50
Comments

generating into source buffer, 380
Compare

models, 67
Compare Code Frames function

Compare Frames panel, 72
Compare Criteria window

description, 487
Compare Frames panel

description, 72
Com-Plete

printing code frames, 61
Com-Pose

printing code frames, 61
Compound keys

generating redefinitions, 461
Condition codes field

Optional Parameters window, 182
Condition levels

Code Frame editor

valid, 106

Conditional field

Maintain User Exit window, 133

User Exits panel, 303
Conditions

assigning true values
CST-Pregen model, 258

Index

code frame
example, 137
generating initialization statements,
330
setting in model PDA, 331

Constant
glossary definition, 515

Context translation mode
description, 501

Control record
retrieving information from, 387
returning PF-key definitions, 427
setting PF-keys, 387

Control screen field
Window Parameters window, 246

Conventions
naming model subprograms, 140
Convert Text to Upper/Lower/Mix
option
General Utility Subprograms
submenu, 383
COPY LINE command
Code Frame editor, 107
Copycode
glossary definition, 515
modifying CC*, 341
Corporate defaults
assigning, 96
Courses
related Natural Construct, 26
CPAEL parameter data area
CPUEL subprogram, 448
example, 348
CPAELNX parameter data area
CPUELNX subprogram, 452
CPAELRD parameter data area
CPUELRD subprogram, 455
CPAELVE parameter data area
CPUELVE subprogram, 457

- 525 -

CPAEXIST parameter data area
CPUEXIST subprogram, 458
CPAFTI parameter data area
CPUFI subprogram, 459
CPAHEL parameter data area
CPHEL subprogram, 472
CPHELB subprogram, 473
CPA-OBJ parameter data area
CPU-OBJ subprogram, 443
CPAREDEF parameter data area
CPUREDEF subprogram, 461
CPARL parameter data area
CPURL subprogram, 462
CPARLRD parameter data area
CPURLRD subprogram, 463
CPASUPER parameter data area
CPUSUPER subprogram, 465

CPAVE parameter data area
CPUVE subprogram, 466
CPA-VIEW parameter data area
CPU-VIEW subprogram, 446
CPAXPAND parameter data area
CPUXPAND subprogram, 469
CPHEL subprogram
browsing fields in file for selection,
472
CPHELB subprogram
browsing fields in file for selection,
473
CPHFTI helproutine
browsing views/files for selection, 473
CPHFIB subprogram
browsing views/files for selection, 474
CPHPRED helproutine
browsing Predict objects for selection,
474
CPHRL helproutine
browsing relationships for selection,
475

Natural Construct Administration and Modeling User’s Manual

CPHSET helproutine
setting flag for help field, 475
CPRELNX parameter data area
CPUELNX subprogram, 452
CPUEL subprogram
example, 351
FILE-CODE field, 442
returning Predict field information,
448
CPUELDE subprogram
returning description attributes, 450

CPUELKY subprogram

returning keywords, 450
CPUELNX subprogram

no subprogram chaining, 352

returning field information, 452
CPUELRD subprogram

calling subprograms for fields, 455

subprogram chaining, 353
CPUELVE subprogram

returning type N verification rules,

457

CPUEXIST subprogram
verifying existence of Predict object,
458
CPUFI subprogram
returning Predict file information, 459
CPU-FREL subprogram
retrieving information about foreign
relationship, 451
CPUHOLD subprogram
finding hold field, 460
CPUKY subprogram
retrieving Predict keyword
information, 460
CPU-OBJ subprogram
generating external data area, 443
CPU-OBJ2 subprogram
issuing CALLNAT to #CALLNAT
subprogram, 444

- 526 -

CPU-OREL subprogram
adding entity information to table,
445
CPUREDEF subprogram
generating field redefinitions, 461
CPURL subprogram
returning relationship information,
462
CPURLRD subprogram
retrieving relationships for specified
files, 463
CPUSUPER subprogram
returning DB2 compound key
definition, 465
returning super/subdescriptor
definitions, 465
CPUVE subprogram
printing verification rules to source
buffer, 466
CPUVERUL subprogram
returning verification rule
information, 468
CPU-VIEW subprogram
generating field definitions, 446
CPUXPAND subprogram
expanding super/subdescriptors/
redefined fields, 468
Creating model subprograms
description, 168
Creating new models
Natural Construct, 121
CSA2LONG parameter data area
CSU2LONG subprogram, 440
CSABLDRP parameter
CSUBLDRP subprogram, 380
CSABYTES parameter data area
CSUBYTES subprogram, 382
CSACASE parameter data area
CSUCASE subprogram, 383

Index

CSACENTR parameter data area
CSUCENTR subprogram, 385

CSACOMPR parameter data area
CSUCOMPR subprogram, 386

CSADB2SP parameter data area
CSUDB2SP subprogram, 389

CSADYNA #ATTRIBUTE-CHARS field
CSUDYNAT subprogram, 393

CSADYNAT parameter data area
CSUDYNAT subprogram, 394

CSAEMLEN parameter data area
CSUEMLEN subprogram, 395

CSAFDEF parameter data area
CSUFDEF subprogram, 397

CSAFDEF. INVALID FORMATS field
CSUFDEF subprogram, 397

CSAFRVAR parameter data area
CSUFRVAR subprogram, 398

CSAHEADS parameter data area
CSUHEADS subprogram, 400

CSAIS parameter data area
CSUIS subprogram, 402
CSALENGT parameter data area
CSULENGT subprogram, 404
CSAMAX parameter data area
CSUMAX subprogram, 406
CSAMIMAX parameter data area
CSUMIMAX subprogram, 407

CSAMODEL parameter data area
CSUMODEL subprogram, 408

CSAMORE parameter data area
CSUMORE subprogram, 410
CSAMPBOX parameter data area
CSUMPBOX subprogram, 411

CSAMPFLD parameter data area
CSUMPDUP subprogram, 412
CSUMPOVL subprogram, 414
CSUMPTAB subprogram, 416

- 527 -

CSAMPFLD.FIELD-INFO(¥) structure
checking for duplicate fields on map,
412

CSAMPOUT parameter data area
CSUMPMMS subprogram, 414

CSAMPREG parameter data area
CSUMPREG subprogram, 415

CSAMPSET parameter data area
CNUMPPRF subprogram, 364
CSUMPCPR subprogram, 411
CSUMPLAY subprogram, 412
CSUMPMMS subprogram, 414

CSAMPTST parameter data area
CSUMPTST subprogram, 417

CSAMPX-Y parameter data area
CSUMPTAB subprogram, 416

CSANATFM parameter data area
CSUNATFM subprogram, 418

CSANEWX parameter data area
CSUNEWX subprogram, 419

CSAPARMS parameter data area
CSUPARMS subprogram, 420

CSAPASS parameter data area
CNUSRCRD subprogram, 373
CPUELRD subprogram, 455
CPURLRD subprogram, 463
CPUXPAND subprogram, 469

CSASCAN parameter data area
CSUSCAN subprogram, 425

CSASELFYV parameter data area
CSUBLDRP subprogram, 380
CSUSELFV subprogram, 426

CSASETKY parameter data area
CSUSETKY subprogram, 427

CSASETKY. PF-NAME(*) array
returning PF-key names, 427

CSASETW parameter data area
CSUSETW subprogram, 428

Natural Construct Administration and Modeling User’s Manual

CSASTD parameter data area
CNUEL subprogram, 355
CPHEL subprogram, 472
CPHELB subprogram, 473
CPHFIB subprogram, 474
CSULABEL subprogram, 403
CSU-VAR subprogram, 379
processing errors, 350
required fields, 161

CSASTD.ERROR-FIELD field
CSUFDEF subprogram, 397

CSASTD.MSG field
CSUFDEF subprogram, 397
CSUIS subprogram, 402
CSULABLE subprogram, 403
CSASUBP parameter data area
CSUSUBP subprogram, 432
CSATRANS parameter data area
CSUTRANS subprogram, 437
CSAXCHK parameter data area
CSUXCHK subprogram, 439
CSFHCOPY utility
printing hardcopy of code frames, 486
CSFLOAD utility
loading code frames, 483, 485
CSFUNLD utility
unloading code frames, 483—-484
CSGCMPL utility
Source Range Compare Facility
window, 488
using in batch, 489
using online, 488
CSGCMPS utility
Compare Criteria window, 487
comparing two Natural source
modules, 487
CSHLOAD utility
loading help modules, 483
CSHUNLD utility
unloading help modules, 483

- 528 -

CSLRCODE LDA
valid codes for RETURN-CODE field,
162
CST-Clear model
description, 219-220
example, 220
parameters, 221
Standard Parameters panel, 222

CST-Document model
description, 276
example, 276
parameters, 277
Standard Parameters panel, 278
user exits, 280

CST-Frame model
generation subprogram
example, 271
parameters, 272
Standard Parameters panel, 273
user exits, 274
CSTG command
invoking Natural Construct from a
steplib, 345
CSTLDA SYSERR library
description, 497
CST-Modify model
description, 239
example, 239
parameters, 240
Standard Parameters panel, 241
supporting dynamic translation, 240
user exits, 249
CST-Modify-332 model
description, 250
Standard Parameters panel, 254
example, 253
user exits, 256
CSTMSG library
SYSERR
description, 498
storing messages, 498

Index

CST-Postgen model
description, 264
example, 264
parameters, 265
Standard Parameters panel, 266
SUBSTITUTION-VALUES user exit,
332
user exits, 267

CST-Pregen model
description, 258
example, 258
parameters, 259
Standard Parameters panel, 259—-260
user exits, 261
CST-Read model
example, 226
parameters, 227
reading input parameters, 320
Standard Parameters panel, 228
CST-Save model
example, 232
parameters, 233
Standard Parameters panel, 234
CST-Shell model
description, 294
example, 294
parameters, 295
Standard Parameters panel, 296
CST-Stream model
description, 288
parameters, 289
Standard Parameters panel, 290
user exits, 291
CST-Validate model
CHECK-AFTER-EDIT subroutine,
286
coding validations, 285
description, 282
GENERATE-SUBROUTINES user
exit, 285
parameters, 283

- 529 -

Standard Parameters panel, 284
user exits, 285
validating array fields, 286
CSU2LONG subprogram
converting variable name to
abbreviation, 440
CSUBANN subprogram
generating standard banner, 380

CSUBLDRP subprogram
building report layout, 380
CSUBMIT subprogram
submitting JCL job (mainframe), 381
CSUBYTES subprogram
calculating required bytes for field,
382
CSUCCMD subprogram
multiple-module generation utility,
384
CSUCTRL subprogram
retrieving information from Control
record, 387

CSUCURS subprogram
determining cursor position, 387
CSUCURS1 subprogram
determining cursor position, 388
CSUDB2SP subprogram
generating FIND statement for
superdescriptor, 389
CSUDEFLT subprogram
providing model defaults, 392
supplying default model parameters,

CSUDELFF subprogram
deleting lines containing “/, 391
CSUDYNAT subprogram
building parameters containing
dynamic attributes, 393
CSUEMLEN subprogram
number of characters to display edit
mask, 395

Natural Construct Administration and Modeling User’s Manual

CSUENDX subprogram
generating end of user exit prompt,
396
CSUFDEF subprogram
validating field definition, 397
CSUFRVAR subprogram
return parameters and conditions
from model, 398

CSUGEN subprogram
issuing CALLNAT to Generate
function, 399
CSUHEADS subprogram
separating line of headings, 400
CSUINCL program
expanding copycodes in edit buffer,
401
CSUINCL utility
inserting INCLUDE members, 492
CSUIS subprogram
checking contents of alphanumeric
field, 402
CSULABEL subprogram
verifying a Natural looping label, 403
CSULENGT subprogram
building input prompts, 404
calculating length of heading, 404
CSULPS subprogram
changing languages, 405
CSUMAX subprogram
assigning maximum field value, 406
CSUMIMAX subprogram
assigning minimum field value, 407
CSUMODEL subprogram
returning information about Natural
Construct mode, 408
CSUMORE subprogram
initial value for LEFT-MORE/RIGHT-
MORE array, 409

—-530 -

CSUMPBOX subprogram
handling map edit buffer, 411

CSUMPCPR subprogram
replacing map settings, 411

CSUMPDUP subprogram

checking for duplicate fields on map,
412

CSUMPLAY subprogram

loading map layout, 412

returning map settings, 412
CSUMPMMS subprogram

merging two map settings, 414
CSUMPOVL subprogram

checking for overlapping fields on

map, 414
CSUMPREG subprogram

finding available area on map, 415

CSUMPTAB subprogram
calculating abs field coordinates on
map, 416
creating field prompts on map, 416

CSUMPTST subprogram
testing map specifications, 417

CSUNATFM subprogram
building valid Natural format
definition, 418

CSUNEWX subprogram
generating new user exit prompt, 419

CSUPARMS subprogram
returning NATPARM value, 420

CSUPARTY subprogram
returning byte length of Natural data
types, 421

CSUPPER program
converting source buffer to upper case,
422

CSUPPER utility
upper case translation, 492

Index

CSUREADS subprogram

reading specification parameters, 423
CSUREF subprogram

generating referential integrity

checks against foreign files, 424
CSUSCAN subprogram

scanning edit buffer for string, 425

CSUSELFV subprogram
selecting fields from views, LDAs, or
PDAs, 426
CSUSETKY subprogram
returning PF-key definitions, 427
CSUSETW subprogram
separating line of headings, 428
CSUSORT subprogram
sorting 2-dimensional array, 429
CSUSPLIT program
splitting source buffer lines, 430
CSUSUB command
CSUSUB program, 431
CSUSUB program
submitting JCL job (mainframe), 431
submitting source buffer to internal
reader (mainframe), 492
CSUSUBP subprogram
returning information about
subprograms, 432
CSUTEST command
Single Module Test Program panel,
178-179
CSUTEST program
testing model subprograms, 433
CSUTLATE subprogram
translating runtime messages, 434
CSUTRANS subprogram
returning application message text,
435
CSUTRANS translation utility
creating translation LDAs, 165, 507

—-531-

defining *Language hierarchy, 165,

509

description, 507
CSU-VAR subprogram

validating variable name, 379
CSUXCHK subprogram

scanning for user exits, 439
CSXCNAME subprogram

implementing security, 90

supplying default model parameters,

CSXDEFLT subprogram
defining model defaults, 93
modifying default model parameters,
94
supplying default model parameters,

CSXDUEXT subprogram
implementing security, 90
CSXFUEXT subprogram
implementing security, 90
CSXHUEXT subprogram
implementing security, 90
CSXMUEXT subprogram
implementing security, 90
CSXPSCHG subprogram
implementing security, 90
CSXSUEXT subprogram
implementing security, 90
CUBAMAL translation LDA
example, 163
CU--EM subprogram
returning edit masks for date/time
fields, 476
CU--LRP subprogram
returning prompts for panels, 477
CU--MSG subprogram
returning text for application error
messages, 478

Natural Construct Administration and Modeling User’s Manual

CU--PDA parameter data area
assigning PDA-OBJECT-TYPE
parameter, 51
CNUSRCRD subprogram, 373
CPUELRD subprogram, 455
CPURLRD subprogram, 463
CPUXPAND subprogram, 469
CSUDB2SP subprogram, 389

CU--QUOT
changing single quotation marks to
double, 184
Cursor
determining field position, 387-388
Cursor translation field
Standard Parameters panel
CST-Modify model, 242
Cursor-sensitive
glossary definition, 515
Customize
models, 337
CU--UL subprogram

returning underscore lines for panels,

479
CU--VERR copycode

validating array fields, 286
CU--VERZ copycode

validation subprograms, 286
CVUPPERC utility

converting Natural Construct

components to upper case, 491
CX prefix

modifying subprograms and code

frames, 338

-532-

D

Data area
glossary definition, 515
Data areas
generating external, 443
generating internal, 446
retrieving information about next
field, 358
returning information about next
field, 357
Data scrolling
backward with PF7 (bkwrd), 36
forward with PF8 (frwrd), 36
Database field
Model Compare Utility window, 68
Date field
Select Frames window, 60
DB2 compound key
expanding, 468
Debugging
inserting INCLUDE code, 492
DEFAULT keyword
defining model defaults, 91
modifying model defaults, 93
Default language
for Natural Construct, 494
Default return field
Maintain Control Record panel, 66
Default user exit code field
Maintain User Exit window, 135
Defaults
assigning corporate, 96
defining model, 91, 93
modifying model, 91
supplying logical hold field, 98
supplying object description, 98
supplying primary key, 97

Index

Define Local Using Data Area field
LOCAL-DATA User Exit window, 321

DEFINE parameter
Code Frame editor, 171

DEFINE PRINTER(SRC=1) OUTPUT
'SOURCE' statement
writing to the edit buffer, 271
DEFINE PRINTER(SRC=1) OUTPUT
"SOURCE’ statement
writing to edit buffer, 170
Define View of Primary File field
LOCAL-DATA User Exit window, 321

Definitions
validating field, 397

Delete Lines Containing “*/ option
Edit Buffer Related Subprograms
submenu, 391

DEPTH-KEYS condition
modifying code frames, 343
DESCRIBE-INPUTS user exit

description, 316

example, 316

Description field

Additional Parameters panel
CST-Document model, 279

Code Frame editor, 103

Maintain Models panel, 49

Select Frames window, 59

Standard Parameters panel
CST-Clear model, 222
CST-Document model, 278
CST-Frame model, 273
CST-Modify-332 model, 255
CST-Postgen model, 266
CST-Pregen model, 260
CST-Shell model, 296
CST-Stream model, 290
CST-Validate model, 284

- 533 -

Direct command

direct command line, 42

sample, 43
Direct command box

specifying direct commands (Unix), 44
Direction indicator

Code Frame editor, 103, 107
Disable indicator field

Maintain Control Record panel, 64
Display help

PF1 (help), 35
DISPLAY statement

NOHDR option, 170, 271

NOTITLE option, 170, 271

Document in Predict field
Optional Parameters window, 183
Document specification field
Maintain Models panel, 53
Document subprogram
creating for a new model, 212
description, 177, 276
example, 178
Documentation
related Natural Construct, 25
Driver menu options
CNUELNX, 358
CNUERMSG, 359
CNUEXIST, 360
CNUGDABL, 361
CNUGDAEL, 362
CNUGENDA, 363
CNUMPPREF, 365
CNUMSG, 369
CNUPEXST, 370
CNUSEL, 371
CNUSRCNXA, 372
CNUSRCRD, 374
CPUEL, 448
CPUELNX, 453
CPUELRD, 456

Natural Construct Administration and Modeling User’s Manual

CPUELVE, 457 CSUSETW, 428
CPUEXIST, 458 CSUSPLIT, 430
CPUFI, 459 CSUSUBP, 432
CPU-OBJ, 443 CSUTEST, 433
CPUREDEF, 461 CSUTRANS, 438
CPURL, 462 CSU-VAR, 379
CPURLRD, 464 CSUXCHK, 439
CPUSUPER, 465 CSYBYTES, 382
CPUVE, 467 Drivers Menu function
CPU-VIEW, 447 description, 79

CPUXPAND, 469
CSU2LONG, 440
CSUCASE, 383

DX edit command
Code Frame editor, 110

DX-Y edit command
8338311:1/[%%, %88% Code Frame editor, 110
CSUDB2SP, 390 DY edit command
CSUDELFF, 391 Code Frame editor, 110
CSUDYNAT, 394 Dynamic attributes
CSUEMLEN, 395 building DY parameter, 393
CSUENDX, 396 Dynamic Attributes fields
CSUFDEF, 397 Maintain Control Record panel, 65

CSUFRVAR, 398

Dynamic translation
CSUHEADS, 400

modify subprograms, 240

CSUINCL, 401 using CSUTRANS, 507
CSUIS, 402

CSULABEL, 403

CSULENGT, 404

CSUMAX, 406 E

CSUMIMAX, 407

CSUMODEL, 408 Edit buffer

CSUMORE, 410 expanding copycode, 401

CSUMPLAY, 413 saving current code frame, 59
CSUMPREG, 415 scanning for existence of text strings,
CSUMPTST, 417 425

CSUNATFM, 418 scanning for user exits, 439
CSUNEWX, 419 splitting long lines, 430
CSUPARMS, 420 Edit Code Frame function

CSUPPER, 422 L. . .
CSUSCAN., 425 Administration main menu, 58

Edit commands
CSUSETKY, 427 Code Frame editor, 110

positional, 112

~534 -

Index

Edit masks
writing information without
embedded spaces, 184
Editors
Code Frame, 103
Embedded statements field
Optional Parameters window, 182
END edit command
Code Frame editor, 110
END-OF-PROGRAM user exit
description, 316
example, 317
Entering a value
glossary definition, 515
Entity information
adding to table, 445
Error messages
multilingual support for, 494
ERROR-FIELD-INDEX fields (1/2/3)
CSASTD parameter data area, 162
Errors
processing, 350
EX edit command
Code Frame editor, 110
Execute
glossary definition, 515
Exists field
User Exits panel, 303
Export utility
code frame, 484
description, 483
External data areas
generating, 443
modifying, 341
External parameter data areas
description, 348

—-535-

EX-Y edit command
Code Frame editor, 110

EY edit command
Code Frame editor, 110

F

F line type
Code Frame editor, 105

Field
glossary definition, 516

Field names
changing dynamically, 86, 494
maintaining consistency, 494

Field-level help
active, 40
description, 39
passive, 39

Fields
adding to a data area, 363
assigning maximum values, 406
assigning minimum values, 407
CALLNAT subprogram for each, 456
defining a logical hold, 460
determining cursor position, 387-388
expanding redefined, 468—469
generating redefinitions, 461
retrieving information about, 356
retrieving information about next, 453
retrieving information from Predict
about, 448
retrieving verification rule names, 457
returning Predict information about,
448, 452
supplying default alphanumeric
values, 93
supplying default logical values, 93
supplying default numeric values, 93
validating definitions for, 397

Natural Construct Administration and Modeling User’s Manual

File field
Model Compare Utility window, 68
FILE-CODE field
Natural Security, 442
Files
restricting access to Predict, 441
Find Available Area in Layout option
Map Related Subprograms submenu,
415
Find PF Key Related Information option
General Utility Subprograms
submenu, 427
FIND statement
generating for superdescriptor, 390
First header field
Standard Parameters panel
CST-Modify model, 243
FNAT system file
copying modified modules, 340
Foreign files
generating referential integrity
checks against, 424
Foreign relationships
retrieving information about, 451
Formatting
supported for SYSERR message text,
505
SYSERR message text, 503-504
Frame Compare Facility panel
description, 77
Frame field
Select Frames window, 59—-60
Frame OFTF field
Window Parameters window, 246
Frames
exporting, 484
importing, 485
FREE field
Code Frame editor, 103

- 536 -

Function
glossary definition, 516
Function field
Code Frame menu, 100
Single Module Test Program panel,
179

G

Generate as subroutine field
Maintain User Exit window, 134
Generate function
issuing CALLNAT to, 399
Generate trace code field

Standard Parameters panel
CST-Stream model, 290

GENERATE-CODE user exit
description, 317
example, 318
GENERATE-SUBROUTINES user exit
CST-Validate model, 285
description, 319
GENERATE-VALIDATIONS user exit
description, 319
Generating multiple modules
utility, 492
Generation main menu
PF5 (optns), 181
Generation options
Optional Parameters window, 182
Generation subprograms
creating for a new model, 211
description, 170
example, 171
NOTITLE and WRITE TITLE ’’
statements, 184
NOTITLE or WRITE TITLE >’
statements, 184

Index

PDA-FRAME-PARM field, 171, 271
supplying code frame parameters, 128

Global data area field

Standard Parameters panel
CST-Shell model, 297

Global data areas (GDAs)

defining
CST-Shell model, 294

Glossary of terms
used in this manual, 515

GUI

sample subprogram
user exit examples, 115

GUI sample subprogram
Maintain User Exit window, 134

H

-H edit command

Code Frame editor, 112

Height field
Window Parameters window, 245

Help
displaying

PF1 (help), 35
Help and return codes

CNHOBJ, 377
CPHESET, 475
Natural data
prefix used, 187
Predict data
prefix used, 187
Hold field
determining for a file, 460
HOLD-FIELD keyword
supplying default hold field, 98

IF comparison clause
generating for two structures, 386
Import utility
using, 483, 485
In member field
Maintain Current Editor Profile
window, 114
INCLUDE code members
description, 499
retrieving message text with, 499
Include recursive code frames field
CSFLOAD Multiple Code Frame
Export utility, 484

on menus, 36 INIT parameter
HELP edit command Code Frame editor, 171
Code Frame editor, 110 INIT values
Help indicator field SYfSERR, 507
Hi\{[;itr;iin Control Record panel, 64 SY%I‘]:THEI% f})?‘fn at, 509
multilingual support for, 498 In1t1a11zat_10n statements .
Helproutine %%Xr%tll(r)lg for PDA variables in model
Hgll ossary definition, 516 gene;'ating for PDAC variables, 330
CNHMDL, 375 Ingu.tkll’.romggz
CNHMSG, 376 uilding,

- 537 -

Natural Construct Administration and Modeling User’s Manual

INPUT statements

for PDAX variables

supplying, 226

INPUT-ADDITIONAL-PARAMETERS
user exit

description, 320

example, 320
INPUT-OUTPUTS structure

parameter data areas (PDAs), 348

INPUTS structure
parameter data areas (PDAs), 348

INPUT-SCREEN user exit
description, 320
example, 320

Installation
overriding SYSERR message text, 514

Internal data areas
generating, 447

Internal reader
submitting JCL source buffer to, 492

Invoke
glossary definition, 516
User Exit editor, 302

J

JCL job
submitting (mainframe), 431

K

Keys
defining default primary, 97
Keywords
retrieving information about, 460
returning, 450

- 538 -

L

L field
Code Frame editor, 104
Language
static installation to override
SYSERR, 514
Language Preference window
description, 81
Layout
generated model PDA, 218
LET edit command
Code Frame editor, 110
Libraries
Natural Construct, 31
Line commands
Code Frame editor, 107
Line field
Window Parameters window, 245
Line types
nested code frames, 105
List Code Frames function
Administration main menu, 59
LIST edit command
Code Frame editor, 110
Load Map Layout and Settings option
Map Related Subprograms submenu,
413

Load utilities
transferring data between platforms,
483

Local data areas (LDAs)
creating translation, 163
CST-Shell model
defining, 294
retrieving field information, 355
Standard Parameters panel
CST-Shell model, 297
static or dynamic installation, 496

Index

LOCAL-DATA user exit

description, 321

example, 322—-323
Looping label

verifying a Natural looping label, 403
Lower case

converting text string, 383

M

Maintain Control Record panel
description, 62—63
Maintain Current Editor Profile window
description, 114
edit recovery, 115
example, 114
Maintain Models function
Administration main menu, 48
Maintain Models panel
defining new model
example, 139
Maintain Subprograms panel
description, 61
Maintain User Exit window
description, 133
Maintenance maps
creating, 167
creating translation LDAs, 163
Maintenance subprograms
creating, 168
creating for a new model, 203
order of execution, 168
Major field
Additional Parameters panel
CST-Document model, 279

- 539 -

Map name field
Standard Parameters panel
CST-Modify model, 242
CST-Modify-332 model, 254
Map settings
loading into edit buffer, 412
Maps
calculating absolute field coordinates,
416
loading layout into edit buffer, 413
Maps field
Standard Parameters panel
CST-Document model, 278

Mark a field

glossary definition, 516
Mass translation

translating screen prompts, 500
Mass translation mode

description, 500
Maximum value

generating field assignments, 406
MENUT command

invoking translation mode, 500
Message numbers

using with substitution values, 502
Message text

adding, 41

formatting, 503-504

multilingual support, 41

multilingual support for, 494, 498

overriding multilingual support, 499

retrieving, 359

supported areas for formatting, 505

translating at runtime, 434
Messaging support field

Standard Parameters panel

CST-Shell model, 296

Natural Construct Administration and Modeling User’s Manual

Methods
calling CNUMSG within, 513

Minimum value
generating field assignments, 407
Minor field
Additional Parameters panel
CST-Document model, 279
MISCELLANEOUS-SUBROUTINES
user exit
description, 324
example, 324
MISCELLANEOUS-VARIABLES user
exit
description, 324
example, 325
Mixed case
converting text string, 383
Model
glossary definition, 516
Model field
Maintain Models panel, 49
Model Compare Utility window, 68
Single Module Test Program panel,
180
Model name field
CST-PDA model, 218
Standard Parameters panel
CST-Document model, 278
CST-Postgen model, 266
Model PDA
alphanumeric fields, 218
assigning variable values, 258
creating, 217
creating for a new model, 198
example, 216
example of layout, 146
FILE-CODE field, 441
PDAX variables
supplying INPUT statements, 226
RESET-STRUCTURE field, 220
setting conditions, 331

— 540 —

substitution parameters, 218
supplying default values for PDAX
variables, 328

Model PDA field
Standard Parameters panel
CST-Stream model, 290
CST-Validate model, 284

Model subprograms
description, 62
example, 349, 351
modifying parameter data area (PDA),
184
parameter data areas (PDAs), 142
precautions when using, 184
testing, 178
tips for using, 184
using DISPLAY statements

NOHDR option, 170

Models

clear subprogram example, 220

creating
clear subprogram, 208
code frame example, 193
document subprogram, 212
generation subprogram, 211
maintenance map, 201
maintenance subprogram, 203
model PDA example, 198
parameters for program header, 192
post-generation subprogram, 207
pre-generation subprogram, 206
prototype example, 191
read subprogram, 210
save subprogram, 209
subprograms, 203

creating code frames, 126

creating new
scope and functionality, 122
utility subprograms and
helproutines, 187
what to generate?, 123

Index

creating parameter data areas
(PDAs), 142, 216
creating prototype

isolate parameters, 124
CST-Clear, 219-220
CST-Document, 276

example, 276

parameters, 277
CST-Frame model

example of generation subprogram,

271

parameters, 272
CST-Modify, 239

example, 239
CST-PDA, 216

example, 216

parameters, 217
CST-Postgen, 264

example, 264

parameters, 265
CST-Pregen, 258

example, 258

parameters, 259
CST-Read

parameters, 227
CST-Save model

parameters, 233
CST-Shell

description, 294

example, 294

parameters, 295
CST-Stream, 288
customizing, 337
defining defaults, 91
defining new

description, 139
description of components, 119
maximum number of code frames, 51
modifying model subprograms, 338

—541 -

new
implementing, 185
parameter data areas (PDAs), 216
production copy of model
subprograms, 340
providing defaults for, 392
read subprogram
example, 226
retrieving information about Natural
Construct, 408
retrieving parameters and conditions
from code frames, 398
save subprogram
example, 232
statement
creating, 185
description, 185
supplied
modifying, 141
supplied components, 118
testing Natural Construct-generated,
433
testing subprograms, 178

Modify

code frames, 339, 343

external data areas, 341
maintenance maps, 342
model subprograms, 342
subprograms (CD%*), 341

Modify client specificatn field

Maintain Models panel, 52

Modify models

using steplibs, 345

Modify server specificatn field

Maintain Models panel, 52

Modify subprograms

description, 238
order of execution, 238
supporting dynamic translation, 240

Natural Construct Administration and Modeling User’s Manual

Module
glossary definition, 516
Module name field
CST-PDA model, 218
Standard Parameters panel
CST-Clear model, 222
CST-Document model, 278
CST-Frame model, 273
CST-Modify model, 241
CST-Modify-332 model, 254
CST-Postgen model, 266
CST-Pregen model, 260
CST-Read model, 228
CST-Save model, 234
CST-Shell model, 296
CST-Stream model, 290
CST-Validate model, 284

Module type field
Maintain Models panel, 185
Standard Parameters panel
CST-Shell model, 296

Module types
defining a new model, 122
Maintain Models panel, 51
Modules
comparing in different libraries, 488
comparing Natural source, 487
generating startup
CST-Shell model, 294
regenerating multiple, 492
storing saved, 42
Multilingual support
creating translation LDAs, 163
for Natural Construct, 80
Multiple Code Frame Export utility, 484

Multiple Code Frame Import utility
description, 485

- 542 -

N

N line type
Code Frame editor, 105
Naming conventions
defining a model, 140
NATPARM parameters
supported, 420

Natural
returning byte length of data types,
421
verifying looping label, 403
Natural Construct

accessing Predict from model
subprograms, 338
creating new models, 121
documentation and course
information, 25
general purpose generation
subprograms, 476
generated modules

advantages of using, 28
generation utility, 378
glossary of terms, 515
invoking from a steplib, 34, 345-346
libraries, 31
multilingual support, 494
nucleus, 62

description, 119

PF-key control, 247
PF-key descriptions, 35
retrieving information about models,
408
retrieving information about
subprograms, 432
saving objects, 42
supplied models

modifying, 141

Index

terminating
PF3 (quit), 36

terminating and saving, 30

testing generated modules, 433
Natural Construct Administration and
Modeling User’s manual

layout, 23

purpose, 22
Natural Construct client

translating specification data passed

to the server, 288
Natural Construct components

converting to upper case, 491
Natural editor profile

Code Frame editor, 114

Natural Next prompt
specifying direct commands, 44
Natural objects
checking for existence of, 360
types, 377
Natural Security
retrieving information from Predict,
441
Natural source modules
comparing, 487
Natural stack
placing substitution values, 341
Natural-related helproutines (CNH),
375
Natural-related subprograms
description, 355
NCSTBGEN command
batch generation, 346
NCSTBGEN utility
regenerating multiple modules, 492
NCST-CONTROL file
CSUSETKY subprogram, 427

— 543 —

NCSTDEM2 library
invoking the demo system
DB2, 33
NCSTDEMO library
invoking the demo system
Adabas, 33
NCSTDEMS library
invoking the demo system
Unix SQL, 33
NCSTDEMYV library
invoking the demo system
VSAM, 33
NCST-FRAME-LINES file
CSUFRVAR subprogram, 398

NCSTG module
invoking Natural Construct from a
steplib, 346

NCSTG program
invoking Natural Construct from a
steplib, 34

NCST-MODEL file
CNHMDL utility subprogram, 375
CSUFRVAR subprogram, 398

NCST-SUBPROGRAM file
CSUSUBP subprogram, 432

Nested code frames

description, 55

example, 131

exporting, 484

line types, 105

supplying parameters, 129
-nnnn edit command

Code Frame editor, 112
NOHDR option

DISPLAY statement, 170, 271
NOTITLE option

WRITE, DISPLAY, or PRINT

statements, 170, 271

Nucleus
description, 119

Natural Construct Administration and Modeling User’s Manual

O

Object
glossary definition, 516
Object category
CN* prefix, 350
CP* prefix, 350
CS* prefix, 350
Object description
defining default, 98
Objects
passing information about elements
of, 444
saving Natural Construct-generated,
42
Of indicator field
Maintain Control Record panel, 64
Optional field
glossary definition, 516
Optional Parameters window
description, 182
PF5 (optns) key, 182
OUTPUTS structure
parameter data areas (PDAs), 348
Overriding SYSERR numbers
in message text, 499

P

-P edit command
Code Frame editor, 112
PA-key settings
Code Frame editor
modifying, 113
Panel

Panels
creating multilingual, 83
displaying next
PF11 (right), 36
displaying previous
PF10 (left), 36
PF2 (retrn), 35
editing text, 86
translating text, 89
Parameter
glossary definition, 516
Parameter data area field
Standard Parameters panel
CST-Clear model, 222
CST-Frame model, 273
CST-Modify model, 241
CST-Modify-332 model, 254
CST-Pregen model, 260
CST-Read model, 228
CST-Save model, 234
CST-Shell model, 297

Parameter data areas (PDAs)
CPAEL, 348
creating new models, 142
defining
CST-Shell model, 294
external, 348
model PDA, 216
model subprograms, 216
modifying redefinitions, 184
retrieving field information, 355
selecting fields from, 426

Parameter field
Code Frame editor
N line types, 105
PARAMETER-DATA user exit
description, 325
example, 325

Parameters

glossary definition, 516 calculating values at runtime, 126

containing dynamic attributes, 393

— 544 —

Index

model components, 125
prototype
isolating, 125
reading specification, 423
removing redundant, 125
substitution, 127
model PDA, 218
supplying code frame
generation subprograms, 128
nested code frames, 129
supplying default corporate, 96
supplying default library-specific, 94
supplying default model, 93, 95
supplying default Predict, 97
user exit
description, 131
using substitution values, 498
PDA name field
Maintain Models panel, 49
PDA variables
generating initialization statements,
310
PDAC variables
generating initialization statements,
330
PDAC-DEPTH-KEYS field
model PDA, 342

PDA-CONDITION-CODES field
CST-PDA model, 218
model PDA, 342

PDA-FILE parameter
CPHFT helproutine, 473
CPHRL helproutine, 475

PDA-FRAME-PARM field
CU--MSG subprogram, 478
invoking generation subprograms,
271

PDA-KEY parameter
CNHMDL helproutine, 375
CNHMSG helproutine, 376
CPHFIB subprogram, 474

— 545 —

PDA-LABEL parameter

CSULABEL subprogram, 403
PDA-LEFT-INDICATOR parameter

CU--LRP subprogram, 477
PDA-LEFT-PROMPT parameter

CU--LRP subprogram, 477
PDA-MSG parameter

CNHMSG helproutine, 376
PDA-OBJECT-TYPE parameter

CNHOBJ helproutine, 377
PDA-RELATIONSHIP-NAME
parameter

CPHRL helproutine, 475
PDA-RESTRICTION parameter

CNHMDL helproutine, 375
PDA-RIGHT-INDICATOR parameter

CU--LRP subprogram, 477
PDA-RIGHT-PROMPT parameter

CU--LRP subprogram, 477
PDA-RIGHT-PROMPT-OF parameter

CU--LRP subprogram, 477
PDA-SET-HELP parameter

CPHSETHL helproutine, 475
PDA-STRING parameter

CSU-VAR subprogram, 379
PDA-TYPE parameter

CPHPRED helproutine, 474
PDA-UNDERSCORE parameter

CU--UL subprogram, 479
PDA-USER-AREA field

CST-PDA model, 218

model PDA, 342

resetting fields, 220
PDAX variables

supplying default values, 328

supplying INPUT statements, 226

writing to source buffer, 329

Natural Construct Administration and Modeling User’s Manual

PDAX-DEPTH-KEYS field
maintenance maps, 343
model PDA, 342

PDAX-DIRECT-COMMAND-

PROCESS field
maintenance maps, 345

Period (.)
return code

description, 36

PF1 (help)
description, 35

PF1=fields
Maintain Current Editor Profile
window, 114

PF10 (left)
description, 36

PF11 (right)
description, 36

PF12 (lang)
description, 81

PF12 (main)
description, 36

PF2 (retrn)
description, 35

PF3 (quit)
description, 36

PF5 (optns)

Generation main menu, 181

PF5 (top)

Code Frame Compare Utility panel,
75

PF5 (windw)

Standard Parameters panel
CST-Modify model, 245

PF6 (hcopy)

Code Frame Compare Utility panel,
76

— 546 —

PF6 (ptkey)
Standard Parameters panel
CST-Modify model, 247
PF7 (bkwrd)
description, 36
PF8 (frwrd)
description, 36
PF-key
glossary definition, 516
PF-key Parameters window
description, 247
PF-key settings
Code Frame editor
modifying, 113
returning information about, 432
PF-Key Settings fields
Maintain Control Record panel, 63
PF-keys
13 to 24, 63
PF12 (lang), 81
PF5 (optns)
Generation main menu, 181
PF5 (windw)
Standard Parameters panel, 245
PF6 (pfkey)
Standard Parameters panel, 247
retrieving definitions, 427
setting Natural Construct, 62
used in Natural Construct
descriptions, 35
PF-KEYS user exit
description, 325
example, 326
Place holders
setting up SYSERR text with, 502
supported areas in Natural Construct,
505

Index

Platforms retrieving information about next
differences between mainframe and field, 453
Unix, 22 Predict keywords
transferring data between, 483 retrieving information about, 460
POINT edit command supplying default model parameters,
Code Frame editor, 109 97
Position fields Predict relationships
Window Parameters window, 245 browsing for selection, 475
Position indicator(s) field retrieving for Speciﬁed ﬁle, 463
Maintain Control Record panel, 65 Predict verification rules
Positional edit commands printing to source buffer, 466
Code Frame editor, 112 returning information about, 468
Post-generation field Pre-generation field
Maintain Models panel, 52 Maintain Models panel, 53
Post-generation modifications field Pre-generation subprogram
Optional Parameters window, 182 creating for a new model, 206

Post-generation subprogram CST-Pregen model, 258
creating for a new model, 207 description, 170

STACK TOP DATA FORMATTED example, 170
statement, 184 for a model, 258

i Primary ke
Post-generation subprograms y key
description, 172 defining default, 97

example, 173 Print. .

Predict verification rules to source buffer, 467
accessing from model subprograms, PRINT (SRC) NOTITLE statement
338 model subprograms, 184
related Print files

helproutines (CPH), 472 DEVICE LPT 1 (Unix), 482
subprograms (CPU), 441 Print File 1 (mainframe), 482
with Natural Security installed, PRINT statements
441 model subprograms
retrieving information from, 441 tips when using, 184
retrieving information when using NOTITLE option, 170, 271

Natural Security, 441

L : Processing
. va:ll}d ?]fiJeCt types, 474 read logical, 352
redict file Processing errors, 350
CALLNAT subprogram for each field, PROCESS-SPECIAL-KEYS user exit
retrieving information about fields, description, 327
145 example, 327

— 547 —

Natural Construct Administration and Modeling User’s Manual

Production copy
model subprogram, 340
PROFILE edit command
Code Frame editor, 111

Program
glossary definition, 516
Programming mode field
Maintain Models panel, 50
Prompts
multilingual support for, 494
translating, 435
Prototype
removing parameters, 126
Prototype of a model
scrutinizing, 124
PROVIDE-DEFAULT-VALUES user
exit
defining model defaults, 92
description, 328
example, 328

Q

Query program
glossary definition, 516
Question mark (?)
displaying help, 36
indicating nested code frames, 129
used in code frame names, 55

QUIT edit command
Code Frame editor, 111

Quotation marks
changing single to double
CU--QUOT, 184

— 548 —

R

Read logical processing
model subprograms, 352
READ PROGRAM edit command
Code Frame editor, 111

Read specification field
Maintain Models panel, 52
Read subprogram
creating for a new model, 210
description, 176, 226
example, 177, 226
Recovery member
Code Frame editor, 113
Recursive code frames
exporting, 484
Redefined fields
expanding, 468
Redefinitions
generating for fields, 461
Reference numbers
using with substitution values, 505
Referential integrity checks
generating against foreign files, 424
Regenerating multiple modules
utility, 492
Relationships
retrieving for specified file, 463
retrieving information about foreign,
451
returning information about, 462
Replace Option field
CSFLOAD Multiple Code Frame
Import utility, 485
Required field
glossary definition, 516
User Exits panel, 303

Index

RESET edit command
Code Frame editor, 111
RESET-STRUCTURE field
model PDA, 220
Restricted data areas
description, 351
Return code
glossary definition, 517
RETURN-CODE field
CSASTD parameter data area, 162,
350
Rules
returning information about Predict
verification, 468

S

S field
Code Frame editor, 104
SAMPLE command
modifying generated code, 304
Sample field
User Exits panel, 303
Sample subprogram
description, 177
Sample subprogram field
Maintain User Exit window, 134
Sample subprograms
GUI, 115
Sample user exit subprogram
example, 177
Save Code Frame function
Administration main menu, 59
Save specification field
Maintain Models panel, 53
Save subprogram
creating for a new model, 209
description, 175

— 549 —

example, 175
for a model
example, 232
SAVE-PARAMETERS user exit
description, 329
example, 330
SCAN edit command
Code Frame editor, 111
used with ABS field, 103
Screen prompts
translating, 435, 438
Scroll
glossary definition, 517
Scroll indicator field
Maintain Control Record panel, 64
Scrolling
backward through data
PF7 (bkwrd), 36
Code Frame editor, 112
forward through data
PFS8 (frwrd), 36
generating depth, 342
three-dimensional arrays, 342
Second header field
Standard Parameters panel
CST-Modify model, 243
Server
translating specification data from the
client, 288
SET CONTROL parameters
separating line of headings, 428
SET-CONDITION-CODES user exit
description, 330
example, 331
Show Model Differences window
example, 69, 76, 78
Single Module Test Program panel
description, 178-179
testing Natural Construct-generated
models, 433

Natural Construct Administration and Modeling User’s Manual

Size fields
Code Frame editor, 103
Window Parameters window, 245

Source buffer
submitting JCL, 492
Source Range Compare Facility window
description, 488
Special Hardware field
Maintain Control Record panel, 65
Specification parameters
reading, 423
writing to source buffer, 329
Specifications only field
Optional Parameters window, 183
Specify a value
glossary definition, 517
SPUELNX
no chaining, 352
STACK TOP option
example, 173
Standard Parameters panel
CST-Clear model, 221-222
CST-Document model, 278
CST-Frame model, 272-273
CST-Modify model, 241
PF5 (windw), 245
PF6 (pfkey), 247
CST-Modify-332 model, 254
example, 253
CST-PDA model, 217
CST-Postgen model, 265-266
CST-Pregen model, 259-260
CST-Read model, 227-228
CST-Save model, 233-234
CST-Shell model, 296
CST-Stream model, 289-290
CST-Validate model, 283-284

START-OF-PROGRAM user exit
description, 332

- 550 -

Startup modules
generating
CST-Shell model, 294
Statement models
alignment of generated code, 186
description, 185
Static mode installation
overriding SYSERR references, 514
Static option
retrieving and replacing references,
514
Status window field
Maintain Models panel, 50
Optional Parameters window, 182
Step field
Optional Parameters window, 182
Steplibs
invoking Natural Construct, 345-346
with Natural Security installed, 34
Stream subprogram
generating, 288
Structure names
passing, 351
Structures
generating IF comparison clause, 386
Subdescriptors
expanding, 468
returning definition for, 465
Subpanel field
Standard Parameters panel
CST-Modify model, 244, 248
Subprogram
CSUCOMPR, 386
glossary definition, 517
Subprogram chaining
CPUELRD, 353
Subprogram field
Code Frame editor
N line types, 105

Subprograms
chaining, 353
CNUERMSG, 359
CNUEXIST, 360
CNUGDABL, 361
CNUGDAEL, 362
CNUGENDA, 363
CNUMPPRF, 364
CNUMSG, 366
CNUPEXST, 370
CNUSEL, 371
CNUSRCNX, 372
CNUSRCRD, 373
CPHEL, 472
CPHELB, 473
CPHFI, 473
CPHFIB, 474
CPHPRED, 474
CPHRL, 475
CPUEL, 448
CPUELDE, 450
CPUELKY, 450
CPUELNX, 452
CPUELRD, 455
CPUELVE, 457
CPUEXIST, 458
CPUFI, 459
CPU-FREL, 451
CPUHOLD, 460
CPUKY, 460
CPU-OBJ, 443
CPU-OBJ2, 444
CPU-OREL, 445
CPUREDEF, 461
CPURL, 462
CPURLRD, 463
CPUSUPER, 465
CPUUNIQ, 466
CPUVERUL, 468
CPU-VIEW, 446
CPUXPAND, 468
CSU2LONG, 440

- 551 -

CSUBANN, 380
CSUBLDRP, 380
CSUBMIT, 381
CSUBYTES, 382
CSUCASE, 383
CSUCCMD, 384
CSUCENTR, 385
CSUCTRL, 387
CSUCURS, 387
CSUCURSL, 388
CSUDB2SP, 389
CSUDELFF, 391
CSUDELFLT, 392
CSUDYNAT, 393
CSUEMLEN, 395
CSUENDX, 396
CSUFDEF, 397
CSUFRVAR, 398
CSUGEN, 399
CSUHEADS, 400
CSUINCL, 401
CSUIS, 402
CSULABEL, 403
CSULENGT, 404
CSULPS, 405
CSUMAX, 406
CSUMIMAX, 407
CSUMODEL, 408
CSUMORE, 409
CSUMPBOX, 411
CSUMPCPR, 411
CSUMPDUP, 412
CSUMPLAY, 412
CSUMPMMS, 414
CSUMPOVL, 414
CSUMPREG, 415
CSUMPTAB, 416
CSUMPTST, 417
CSUNATFM, 418
CSUNEWX, 419
CSUPARMS, 420
CSUPARTY, 421

Index

Natural Construct Administration and Modeling User’s Manual

CSUPPER, 422
CSUREADS, 423
CSUREF, 424
CSUSCAN, 425
CSUSELFV, 426
CSUSELTKY, 427
CSUSETW, 428
CSUSORT, 429
CSUSPLIT, 430
CSUSUBP, 431-432
CSUTEST, 433
CSUTLATE, 434
CSUTRANS, 435
CSU-VAR, 379
CSUXCHK, 439
CU--EM, 476
CU--L, 477
CU--MSG, 478
CU--UL, 479
document, 177, 276
implementing user exit security, 90
issuing CALLNAT for fields in Predict
file, 456
maintenance
creating, 168
model
creating, 168
modify, 238
modifying parameter data areas
(PDAs), 184
precautions when using, 184
tips for using, 184
modifying CD*, 341
modifying model, 338
Natural Construct utility
prefix used, 187
Natural data retrieval
prefix used, 187
passing relationship information to,
463
Predict data retrieval
prefix used, 187

- 552 -

pre-generation
description, 170

retrieving information about Natural

Construct, 432

returning information about, 432

sample user exit, 177

save, 175

SPUVE, 466

testing model, 433

using DISPLAY statements

NOHDR option, 271

validating a field definition, 397
Subroutine

glossary definition, 517
Substitution data members

supported areas in Natural Construct,

505

using with SYSERR, 498, 502
Substitution parameters

default format, 218

description, 127

glossary definition, 517

model PDA, 218

stack order, 173

supplying values for, 264
Substitution values

replacing with a null string, 173
Summary Report window

description, 74
Superdescriptors

expanding, 468

generating a FIND statement, 389

returning definition for, 465
SYSCST library

description, 33
SYSCSTX library

description, 33
SYSDIC-DB file

CPUEXIST subprogram, 458

Index

SYSDIC-EL file

CPUELNX subprogram, 452

CPU-OBJ subprogram, 443

CPU-VIEW subprogram, 446
SYSDIC-FI file

CPHFT helproutine, 473

CPHRL helproutine, 475

CPHSETHL helproutine, 476

CPUELNX subprogram, 452

CPUEXIST subprogram, 458

CPU-OBJ subprogram, 443

CPURLRD subprogram, 463

CPU-VIEW subprogram, 446
SYSDIC-KL file

CPURLRD subprogram, 463
SYSDIC-KY file

CPHPRED helproutine, 474

CPUEXIST subprogram, 458
SYSDIC-MO file

CPHPRED helproutine, 474
SYSDIC-PR file

CPHPRED helproutine, 474

CPUEXIST subprogram, 458
SYSDIC-RE file

CPHPRED helproutine, 474
SYSDIC-RL file

CPUEXIST subprogram, 458
SYSDIC-SY file

CPHPRED helproutine, 474

CPUEXIST subprogram, 458
SYSDIC-UE file

CPUEXIST subprogram, 458
SYSDIC-VE-ACT file

CPUVE subprogram, 466
SYSERR INIT values

format, 165, 509

SYSERR message library
specifying a valid name for message
text, 507

- 553 -

SYSERR numbers
formatting, 504
multilingual support

translation LDAs, 165

overriding in a one language install,
514
overriding multilingual support, 499
supported areas for formatting, 505
supported areas in Natural Construct,
505
translation LDAs, 507

SYSERR references
format, 495
formatting, 503
multilingual support for text and
messages, 494
referencing text, 495
translating prompts and message
text, 494
SYSERR utility
adding multilingual messages, 41
multilingual model panels, 80
multilingual support, 494
SYSLIBS library
description, 32
SYSMAIN utility
using to copy new model components,
185
System field
Standard Parameters panel
CST-Stream model, 290
CST-Validate model, 284

SYSTEM library
description, 32
System name field

Standard Parameters panel
CST-Shell model, 296

SYSTEM-FNAT file
CNUEL subprogram, 355
CNUEXIST subprogram, 360
CNUGDAEL subprogram, 362

Natural Construct Administration and Modeling User’s Manual

CNUSRCNX subprogram, 372
CNUSRCRD subprogram, 373

SYSTEM-FUSER file
CNHOBJ helproutine, 377
CNUEL subprogram, 355
CNUEXIST subprogram, 360
CNUGDABL subprogram, 361
CNUGDAEL subprogram, 362
CNUSRCNX subprogram, 372
CNUSRCRD subprogram, 373

T

T field
Code Frame editor, 105

Terminate
glossary definition, 517
Natural Construct
PF3 (quit), 36
Text
multilingual support for message, 494
Text field
Optional Parameters window, 182
Text strings
centering, 385
scanning edit buffer for, 425
Text translation
context translation, 500
mass translation, 500
Three-dimensional arrays
scrolling, 342
Time field
Select Frames window, 60
Title field
Standard Parameters panel
CST-Clear model, 222
CST-Document model, 278
CST-Frame model, 273
CST-Modify model, 241

— 554 —

CST-Modify-332 model, 255
CST-Postgen model, 266
CST-Pregen model, 260
CST-Read model, 228
CST-Save model, 234
CST-Shell model, 296
CST-Stream model, 290
CST-Validate model, 284
Window Parameters window, 246

TOP edit command
Code Frame editor, 113

Trace facilities
Natural Construct
debugging a model, 181
Translate Short Message window
example
editing text, 87
translating text, 88
description, 501
Translation
lower case to upper case, 492
Translation LDAs
creating, 165, 507
creating for a new model, 200
defining a larger field, 510
example, 167
format, 164
implementing multilingual support,
163
multilingual support, 163, 496
naming conventions, 164
Translation LDAs field
Standard Parameters panel
CST-Document model, 278
CST-Modify model, 242
Translation mode
context translation, 501
editing panel text, 86
invoking Administration main menu,
30
mass translation, 500

Index

translating panel text, 87
using, 84
Type field
Additional Parameters panel
CST-Document model, 279
Maintain Models panel, 51
Types
valid object code, 51

U

U line type
Code Frame editor, 105
Underscore character field
Maintain Control Record panel, 64
Unload utilities
transferring data between platforms,
483
Upper case
converting contents of source buffer
to, 422
converting text string, 383
Upper case translation utility
description, 492
UPPER edit command
Code Frame editor, 112
User exit
glossary definition, 517
User exit code
regenerating, 304
reusing, 301
User Exit editor
description, 304
User exit name field
Maintain User Exit window, 133
User exit point
adding to code frames, 132

— 555 -

User exit required field
Maintain User Exit window, 133

User exit security
implementing, 90
User exit subprogram

sample, 177

User exits
ADDITIONAL-INITIALIZATIONS,
305
ADDITIONAL-SUBSTITUTION-
VALUES, 305
ADDITIONAL-TRANSLATIONS, 308
AFTER-INPUT, 309
AFTER-INVOKE-SUBPANELS, 310
ASSIGN-DERIVED-VALUES, 310
BEFORE-CHECK-ERROR, 312
BEFORE-INPUT, 312
BEFORE-INVOKE-SUBPANELS,
314
BEFORE-REINPUT-MESSAGE, 314
BEFORE-STANDARD-KEY-CHECK,
315
CHANGE-HISTORY, 315
Code Frame editor

line commands, 108
CST-Clear model, 223
CST-Document model, 280
CST-Frame model, 274
CST-Modify model, 249
CST-Modify-332 model, 256
CST-Postgen model, 267
CST-Pregen model, 261
CST-Read model, 229
CST-Save model, 235
CST-Stream model, 291
CST-Validate model, 285
DESCRIBE-INPUTS, 316
displaying a list of available, 302
END-OF-PROGRAM, 316
format, 304

Natural Construct Administration and Modeling User’s Manual

GENERATE-CODE, 317
GENERATE-SUBROUTINES, 319
GENERATE-VALIDATIONS, 319
generating end of prompt, 396
generating new prompts, 419
INPUT-ADDITIONAL-
PARAMETERS, 320
INPUT-SCREEN, 320
LOCAL-DATA, 321
MISCELLANEOUS-
SUBROUTINES, 324
MISCELLANEOUS-VARIABLES,
324
PARAMETER-DATA, 325
parameters, 131
PF-KEYS, 325
PROCESS-SPECIAL-KEYS, 327
PROVIDE-DEFAULT-VALUES, 328
referencing database fields, 304
SAVE-PARAMETERS, 329
scanning edit buffer for, 439
selecting from User Exits panel, 304
SET-CONDITION-CODES, 330
START-OF-PROGRAM, 332
SUBSTITUTION-VALUES, 332
supplied for the administration
models, 301
translating screen prompts, 438
VALIDATE-DATA, 333

User Exits field
User Exits panel, 303

User Exits panel
CST-Clear model, 223
CST-Save model, 235
description, 303
User field
Select Frames window, 60
Utilities
comparing modules in different
libraries, 488
comparison, 487

— 556 —

converting Natural Construct

components to upper case, 491

creating new models, 187

CSFHCOPY Frame Hardcopy, 486

CSFLOAD Multiple Frame Import,

485

CSFUNLD Multiple Code Frame

Export, 484

INCLUDE code insertion, 492

invoking supplied, 482

loading code frames, 339

multiple module regeneration, 492

Natural Construct generation, 378

Predict-related, 441

submitting JCL source buffer, 492

supplied with Natural Construct
accessing from Drivers menu, 79

transferring data between platforms,

483

unloading code frames, 339

upper case translation, 492

Utility
glossary definition, 517

V

VALIDATE-DATA user exit
description, 333
example
CST-Modify model, 333
CST-Modify-332 model, 335
Validation edits
placing, 343
Validation subprogram
coding validations, 285
description, 282
example, 282
Validations
coding, 285

Index

Variable
glossary definition, 517
Variables
converting to abbreviation, 440
Verification rules
printing to source buffer, 467
retrieving names, 457
returning information about Predict,
468
returning type N, 457
Version field
Model Compare Utility window, 68
Views
selecting fields from, 426
Views field
Standard Parameters panel
CST-Shell model, 297

W

Width field
Window Parameters window, 245

Window
glossary definition, 517
Window Parameters window
description, 245
Window support field
Standard Parameters panel
CST-Modify model, 244
Work files
reading from other platforms, 483
saving in ASCII format (mainframe),
483
saving in ASCII format (Unix), 483
WRITE statements
format, 329
generating for new specification
parameters, 329

— 557 -

NOTITLE option, 170, 271
writing PDAX variables to source
buffer, 329

X

X and Y delimiters
Code Frame editor
SCAN edit command, 111

X delimiter
Code Frame editor, 109

X line type
Code Frame editor, 106

X-Y field
Code Frame editor, 104, 111

Y

Y delimiter
Code Frame editor, 109

Y edit command
Code Frame editor, 113

	Back to Introduction
	Table of Contents
	Preface
	Mainframe and Unix Platforms 22
	Structure of this Manual 23
	Other Resources 25

	1. Introduction to Natural Construct
	Description of Natural Construct 28
	Invoking Natural Construct 30
	Using Natural Construct PF-Keys 35
	Natural Construct Online Help 37
	Automatic Upper Case Translation 41
	Storing Saved Modules 42

	2. Using the Administration Subsystem
	Administration Main Menu 46
	Multilingual Support for Natural Construct 80
	Administration Main Menu in Translation Mode 83
	User Exit Subprograms to Implement Security 90

	3. Using the Code Frame Editor
	Invoking the Code Frame Editor 100
	Using the Code Frame Editor 102

	4. Creating New Models
	Components of a Natural Construct Model 118
	Building a New Model 121
	Implementing Your Model 185
	Utility Subprograms and Helproutines 187

	5. New Model Example
	Procedure for Building the Example Model 190
	Defining the Scope of the Model 191
	Scrutinizing the Prototype 192
	Creating the Code Frame and Defining the Model 193
	Creating the Model PDA 198
	Creating Translation LDAs and Maintenance Maps 200
	Implementing the Model 214

	6. CST-PDA Model
	Introduction 216
	Parameters for the CST-PDA Model 217

	7. CST-Clear Model
	Introduction 220
	Parameters for the CST-Clear Model 221
	User Exits for the CST-Clear Model 223

	8. CST-Read Model
	Introduction 226
	Parameters for the CST-Read Model 227
	User Exits for the CST-Read Model 229

	9. CST-Save Model
	Introduction 232
	Parameters for the CST-Save Model 233
	User Exits for the CST-Save Model 235

	10. CST-Modify and CST-Modify-332 Models
	Introduction 238
	CST-Modify Model 239
	Parameters for the CST-Modify Model 240
	User Exits for the CST-Modify Model 249
	CST-Modify-332 Model 250
	Parameters for the CST-Modify-332 Model 253
	User Exits for the CST-Modify-332 Model 256

	11. CST-Pregen Model
	Introduction 258
	Parameters for the CST-Pregen Model 259
	User Exits for the CST-Pregen Model 261

	12. CST-Postgen Model
	Introduction 264
	Parameters for the CST-Postgen Model 265
	User Exits for the CST-Postgen Model 267

	13. CST-Frame Model
	Sample Subprograms 270
	Generation Subprograms 271
	Parameters for the CST-Frame Model 272
	User Exits for the CST-Frame Model 274

	14. CST-Document Model
	Introduction 276
	Parameters for the CST-Document Model 277
	User Exits for the CST-Document Model 280

	15. CST-Validate Model
	Introduction 282
	Parameters for the CST-Validate Model 283
	User Exits for the CST-Validate Model 285

	16. CST-Stream Model
	Introduction 288
	Parameters for the CST-Stream Model 289
	User Exits for the CST-Stream Model 291

	17. CST-Shell Model
	Introduction 294
	Parameters for the CST-Shell Model 295
	User Exits for the CST-Shell Model 298

	18. User Exits for the Natural Construct Models
	Introduction 300
	User Exits 301
	Supplied User Exits 305

	19. Modifying the Supplied Models
	Introduction 338
	Modify the Supplied Models 339
	Example of Modifying a Model 342
	Using Steplibs to Modify Models 345

	20. External Objects
	Introduction 348
	Natural-Related Subprograms (CNU*) 355
	Natural-Related Helproutines (CNH*) 375
	Natural Construct Generation Utility Subprograms (CSU*) 378
	Predict-Related Subprograms (CPU*) 441
	Predict-Related Helproutines (CPH*) 472

	21. Utilities
	Introduction 482
	Import and Export Utilities 483
	Frame Hardcopy Utility 486
	Comparison Utilities 487
	Upper Case Translation Utility 491
	Additional Utilities 492

	22. Using SYSERR References for Multilingual Support
	Introduction 494
	Defining SYSERR References 495
	Using SYSERR References 496
	Supported Areas in Natural Construct 505
	CSUTRANS Utility 507
	CNUMSG Utility 511
	One Language (Static) Mode 514

	Preface
	Mainframe and Unix Platforms
	Structure of this Manual
	Other Resources
	Related Documentation
	User Manuals
	Installation Manuals

	Other Documentation
	Related Courses

	Introduction to Natural Construct
	Description of Natural Construct
	Natural Construct Subsystems

	Invoking Natural Construct
	Natural Construct Libraries
	SYSLIBS Library
	SYSTEM (FNAT) Library
	SYSCST Library
	SYSCSTX Library
	NCSTDEMO, NCSTDEM2, NCSTDEMV, and NCSTDEMS Libraries
	USERLIB Library
	Executing Generation Facilities from a Steplib with Natural Security Installed

	Using Natural Construct PF-Keys
	Help and Return Codes on Menus

	Natural Construct Online Help
	Panel-Level Help
	Field-Level Help
	Passive
	Active

	Automatic Upper Case Translation
	Storing Saved Modules

	Using the Administration Subsystem
	Administration Main Menu
	Maintain Models Function
	PF4 (frame)

	Code Frame Menu Function
	Edit Code Frame Function
	Save Code Frame Function
	List Code Frames Function
	Purge Code Frame Function
	Clear Edit Buffer Function
	Print Saved Code Frame Function

	Maintain Subprograms Function
	Maintain Control Record Function
	Compare Menu Function
	Compare Models Function
	Comparing the Components of Two Models in Different Files
	Comparing the Components for Two Models in the Same File
	Compare a Range of Models with the Same Name in Two Files

	Compare Frames Function
	Compare Two Code Frames
	Comparing a Range of Frames with the Same Name in Two Files
	Comparing All the Frames Used by Two Models

	Drivers Menu Function

	Multilingual Support for Natural Construct
	PF12 (lang)

	Administration Main Menu in Translation Mode
	Using Translation Mode
	Editing Text in the Current Language
	Translate Text to Another Language

	User Exit Subprograms to Implement Security
	Defining Default Specifications
	Using the CSXDEFLT Subprogram
	Using Library-Specific Defaulting
	Using CSXCNAME Overrides
	Assigning Corporate Defaults
	Using Predict Keywords
	Defining a Default Primary Key
	Defining a Default Logical Hold Field
	Defining a Default Object Description

	Using the Code Frame Editor
	Invoking the Code Frame Editor
	Using the Code Frame Editor
	Order of Command Execution
	Line Commands
	Edit Commands
	Positional Edit Commands
	Maintain Current PF-key Profile Window
	Edit Recovery
	GUI Sample Subprogram

	Creating New Models
	Components of a Natural Construct Model
	Building a New Model
	Step 1: Define the Scope of the Model
	Is the Scope Too Broad?
	Is the Scope Too Narrow?
	What to Generate and Why

	Step 2: Create the Prototype
	Step 3: Scrutinize the Prototype
	Step 4: Isolate the Parameters in the Prototype
	Which Elements Need to be Parameterized?
	Remove Redundant Parameters
	Compile Time Versus Execution Time

	Step 5: Create Code Frame(s) and Define the Model
	Substitution Parameters
	Parameters Supplied by Generation Subprograms
	Parameters Supplied by Nested Code Frames
	Parameters Supplied by User Exits
	Add User Exit Points

	Code Frame Conditions
	Notes
	Define the Model
	Naming Conventions for Model Components

	Step 6: Create the Model PDA
	Model PDA
	#PDA-CONDITION-CODES
	#PDA-USER-AREA

	CU—PDA
	#PDA-MODE
	#PDA-OBJECT-TYPE
	#PDA-MODIFY-HEADER1
	#PDA-MODIFY-HEADER2
	#PDA-LEFT-PROMPT
	#PDA-RIGHT-PROMPT
	#PDA-PHASE
	#PDA-DIALOG-METHOD
	#PDA-TRANSLATION-MODE
	#PDA-USERX-NAME
	#PDA-PF-NAME
	#PDA-PF-NUMBER
	#PDA-PF-KEY
	#PDA-TITLE
	#PDA-GEN-PROGRAM
	#PDA-MODEL-VERSION
	#PDA-HELP-INDICATOR
	#PDA-USER-DEFINED-AREA
	#PDA-UNDERSCORE-LINE
	#PDA-RIGHT-PROMPT-OF
	#PDA-DISPLAY-INDICATOR
	#PDA-CURS-FIELD
	#PDA-CVn
	#PDA-SCROLL-INDICATOR
	#PDA-DYNAMIC-ATTR-CHARS
	#PDA-FRAME-PARM
	#PDA-SYSTEM

	CSASTD PDA
	MSG
	MSG-NR
	MSG-DATA
	RETURN-CODE
	ERROR-FIELD
	ERROR-FIELD-INDEX1/2/3

	Step 7: Create the Translation LDAs and Maintenance Maps
	Translation LDAs
	Maintenance Maps

	Step 8: Create the Model Subprograms
	Maintenance Subprograms
	When are Maintenance Subprograms Invoked?
	Generation Main Menu
	User Exit Editor

	Pre-generation Subprogram
	Generation Subprograms
	Example of a Generation Subprogram

	Post-generation Subprogram
	Stack Order of Substitution Parameters
	Blanks versus Nulls

	Clear Subprogram
	When are Clear Subprograms Invoked?

	Save Subprogram
	Read Subprogram
	Example of a Read Subprogram

	Sample User Exit Subprograms
	Example of a Sample Subprogram

	Document Subprogram
	Example of a Document Subprogram

	Debugging a Model
	Miscellaneous Tips and Precautions

	Implementing Your Model
	Code Alignment of Generated Statement Models

	Utility Subprograms and Helproutines

	New Model Example
	Procedure for Building the Example Model
	Defining the Scope of the Model
	Scrutinizing the Prototype
	Parameters for the Program Header
	Parameters for the Program Body

	Creating the Code Frame and Defining the Model
	Creating the Code Frame
	Example of the Code Frame

	Defining the Model

	Creating the Model PDA
	Example of the Model PDA

	Creating Translation LDAs and Maintenance Maps
	Creating the Translation LDAs
	Example of the Translation LDAs

	Creating the Maintenance Maps
	Example of the Maintenance Maps

	Creating the Maintenance Subprograms
	Example of the Maintenance Subprograms

	Creating the Pre-generation Subprogram
	Example of the Pre-generation Subprogram

	Creating the Post-generation Subprogram
	Example of the Post-generation Subprogram

	Creating the Clear Subprogram
	Example of the Clear Subprogram

	Creating the Save Subprogram
	Example of the Save Subprogram

	Creating the Read Subprogram
	Example of the Read Subprogram

	Creating the Generation Subprogram
	Example of the Generation Subprogram

	Creating the Document Subprogram
	Example of the Document Subprogram

	Test the Model Subprograms

	Implementing the Model

	CST-PDA Model
	Introduction
	Parameters for the CST-PDA Model
	Standard Parameters Panel
	Layout of the Generated Model PDA

	CST-Clear Model
	Introduction
	Parameters for the CST-Clear Model
	Standard Parameters Panel

	User Exits for the CST-Clear Model

	CST-Read Model
	Introduction
	Parameters for the CST-Read Model
	Standard Parameters Panel

	User Exits for the CST-Read Model

	CST-Save Model
	Introduction
	Parameters for the CST-Save Model
	Standard Parameters Panel

	User Exits for the CST-Save Model

	CST-Modify and CST-Modify-332 Models
	Introduction
	CST-Modify Model
	Parameters for the CST-Modify Model
	Standard Parameters Panel
	PF5 (windw)
	PF6 (pfkey)

	User Exits for the CST-Modify Model
	CST-Modify-332 Model
	Example of a Model Modify Subprogram

	Parameters for the CST-Modify-332 Model
	Standard Parameters Panel

	User Exits for the CST-Modify-332 Model

	CST-Pregen Model
	Introduction
	Parameters for the CST-Pregen Model
	Standard Parameters Panel

	User Exits for the CST-Pregen Model

	CST-Postgen Model
	Introduction
	Parameters for the CST-Postgen Model
	Standard Parameters Panel

	User Exits for the CST-Postgen Model

	CST-Frame Model
	Sample Subprograms
	Generation Subprograms
	Parameters for the CST-Frame Model
	Standard Parameters Panel

	User Exits for the CST-Frame Model

	CST-Document Model
	Introduction
	Parameters for the CST-Document Model
	Standard Parameters Panel
	Additional Parameters Panel

	User Exits for the CST-Document Model

	CST-Validate Model
	Introduction
	Parameters for the CST-Validate Model
	Standard Parameters Panel

	User Exits for the CST-Validate Model
	Coding Validations
	Validating Array Fields

	CST-Stream Model
	Introduction
	Parameters for the CST-Stream Model
	Standard Parameters Panel

	User Exits for the CST-Stream Model

	CST-Shell Model
	Introduction
	Parameters for the CST-Shell Model
	Standard Parameters Panel

	User Exits for the CST-Shell Model

	User Exits for the Natural Construct Models
	Introduction
	User Exits
	Reusing User Exit Code
	Invoking the User Exit Editor
	User Exits Panel

	Defining User Exits

	Supplied User Exits
	ADDITIONAL-INITIALIZATIONS
	ADDITIONAL-SUBSTITUTION-VALUES
	ADDITIONAL-TRANSLATIONS
	AFTER-INPUT
	AFTER-INVOKE-SUBPANELS
	ASSIGN-DERIVED-VALUES
	BEFORE-CHECK-ERROR
	BEFORE-INPUT
	BEFORE-INVOKE-SUBPANELS
	BEFORE-REINPUT-MESSAGE
	BEFORE-STANDARD-KEY-CHECK
	CHANGE-HISTORY
	DESCRIBE-INPUTS
	END-OF-PROGRAM
	GENERATE-CODE
	GENERATE-SUBROUTINES
	GENERATE-VALIDATIONS
	INPUT-ADDITIONAL-PARAMETERS
	INPUT-SCREEN
	LOCAL-DATA
	Using with a Browse*/Browse-Select*/Object-Browse* Model

	MISCELLANEOUS-SUBROUTINES
	MISCELLANEOUS-VARIABLES
	PARAMETER-DATA
	PF-KEYS
	PROCESS-SPECIAL-KEYS
	PROVIDE-DEFAULT-VALUES
	SAVE-PARAMETERS
	SET-CONDITION-CODES
	START-OF-PROGRAM
	SUBSTITUTION-VALUES
	VALIDATE-DATA

	Modifying the Supplied Models
	Introduction
	Modify the Supplied Models
	Modifying Code Frames
	Modifying the Model Subprograms
	Modifying Copycode (CC*) and External Data Areas and Subprograms (CD*)

	Example of Modifying a Model
	Using Steplibs to Modify Models
	Invoking Natural Construct From a Steplib

	External Objects
	Introduction
	Object Categories
	Processing Errors
	Passing Structure Names
	Restricted Data Areas
	Callback Functions
	Subprogram Chaining
	No Subprogram Chaining (CPUELNX)
	Using Subprogram Chaining (CPUELRD)

	Natural-Related Subprograms (CNU*)
	CNUEL Subprogram
	Driver Menu Option

	CNUELNX Subprogram
	Driver Menu Option

	CNUERMSG Subprogram
	Driver Menu Option

	CNUEXIST Subprogram
	Driver Menu Option

	CNUGDABL Subprogram
	Driver Menu Option

	CNUGDAEL Subprogram
	Driver Menu Option

	CNUGENDA Subprogram
	Driver Menu Option

	CNUMPPRF Subprogram
	Driver Menu Option

	CNUMSG Subprogram
	Driver Menu Option

	CNUPEXST Subprogram
	Driver Menu Option

	CNUSEL Subprogram
	Driver Menu Option

	CNUSRCNX Subprogram
	Driver Menu Option

	CNUSRCRD Subprogram
	Driver Menu Option

	Natural-Related Helproutines (CNH*)
	CNHMDL Helproutine
	CNHMSG Helproutine
	CNHOBJ Helproutine

	Natural Construct Generation Utility Subprograms (CSU*)
	CSU-VAR Subprogram
	Driver Menu Option

	CSUBANN Subprogram
	CSUBLDRP Subprogram
	CSUBMIT Subprogram (Mainframe)
	CSUBYTES Subprogram
	Driver Menu Option

	CSUCASE Subprogram
	Driver Menu Option

	CSUCCMD Subprogram
	CSUCENTR Subprogram
	Driver Menu Option

	CSUCOMPR Subprogram
	Driver Menu Option

	CSUCTRL Subprogram
	CSUCURS Subprogram
	CSUCURS1 Subprogram
	CSUDB2SP Subprogram
	Driver Menu Option

	CSUDELFF Subprogram
	Driver Menu Option

	CSUDEFLT Subprogram
	CSUDYNAT Subprogram
	Driver Menu Option

	CSUEMLEN Subprogram
	Driver Menu Option

	CSUENDX Subprogram
	Driver Menu Option

	CSUFDEF Subprogram
	Driver Menu Option

	CSUFRVAR Subprogram
	Driver Menu Option

	CSUGEN Subprogram
	CSUHEADS Subprogram
	Driver Menu Option

	CSUINCL Subprogram
	Driver Menu Option

	CSUIS Subprogram
	Driver Menu Option

	CSULABEL Subprogram
	Driver Menu Option

	CSULENGT Subprogram
	Driver Menu Option

	CSULPS Subprogram
	CSUMAX Subprogram
	Driver Menu Option

	CSUMIMAX Subprogram
	Driver Menu Option

	CSUMODEL Subprogram
	Driver Menu Option

	CSUMORE Subprogram
	Driver Menu Option

	CSUMPBOX Subprogram
	CSUMPCPR Subprogram
	CSUMPDUP Subprogram
	CSUMPLAY Subprogram
	Driver Menu Option

	CSUMPMMS Subprogram
	CSUMPOVL Subprogram
	CSUMPREG Subprogram
	Driver Menu Option

	CSUMPTAB Subprogram
	CSUMPTST Subprogram
	Driver Menu Option

	CSUNATFM Subprogram
	Driver Menu Option

	CSUNEWX Subprogram
	Driver Menu Option

	CSUPARMS Subprogram
	Driver Menu Option

	CSUPARTY Subprogram
	CSUPPER Program
	Driver Menu Option

	CSUREADS Subprogram
	CSUREF Subprogram
	CSUSCAN Subprogram
	Driver Menu Option

	CSUSELFV Subprogram
	CSUSETKY Subprogram
	Driver Menu Option

	CSUSETW Subprogram
	Driver Menu Option

	CSUSORT Program
	CSUSPLIT Program
	Driver Menu Option

	CSUSUB Program (Mainframe)
	CSUSUBP Subprogram
	Driver Menu Option

	CSUTEST Program
	Driver Menu Option

	CSUTLATE Subprogram
	CSUTRANS Subprogram
	Driver Menu Option

	CSUXCHK Subprogram
	Driver Menu Option

	CSU2LONG Subprogram
	Driver Menu Option

	Predict-Related Subprograms (CPU*)
	With Natural Security Installed
	CPU-OBJ Subprogram
	Driver Menu Option

	CPU-OBJ2 Subprogram
	CPU-OREL Subprogram
	CPU-VIEW Subprogram
	Driver Menu Option

	CPUEL Subprogram
	Driver Menu Option

	CPUELDE Subprogram
	CPUELKY Subprogram
	CPU-FREL Subprogram
	CPUELNX Subprogram
	Driver Menu Option

	CPUELRD Subprogram
	Driver Menu Option

	CPUELVE Subprogram
	Driver Menu Option

	CPUEXIST Subprogram
	Driver Menu Option

	CPUFI Subprogram
	Driver Menu Option

	CPUHOLD Subprogram
	CPUKY Subprogram
	CPUREDEF Subprogram
	Driver Menu Option

	CPURL Subprogram
	Driver Menu Option

	CPURLRD Subprogram
	Driver Menu Option

	CPUSUPER Subprogram
	Driver Menu Option

	CPUUNIQ Subprogram
	CPUVE Subprogram
	Driver Menu Option

	CPUVERUL Subprogram
	CPUXPAND Subprogram
	Driver Menu Option

	Predict-Related Helproutines (CPH*)
	CPHEL Subprogram
	CPHELB Subprogram
	CPHFI Helproutine
	CPHFIB Subprogram
	CPHPRED Helproutine
	CPHRL Helproutine
	CPHSET Helproutine
	CU--EM Subprogram
	CU--LRP Subprogram
	CU--MSG Subprogram
	CU--UL Subprogram

	Utilities
	Introduction
	Import and Export Utilities
	Multiple Code Frame Export Utility
	Multiple Code Frame Import Utility

	Frame Hardcopy Utility
	Comparison Utilities
	CSGCMPS Utility
	CSGCMPL Utility
	Using CSGCMPL Online
	Using CSGCMPL in Batch

	Upper Case Translation Utility
	Additional Utilities

	Using SYSERR References for Multilingual Support
	Introduction
	Maintenance
	Translation

	Defining SYSERR References
	Using SYSERR References
	On Maps (Screen Prompts)
	For Panel Headings and PF-Key Names
	In Messages
	For Text Translation
	Mass Translation
	Context Translation

	With Substitution Values
	Formatting SYSERR Message Text

	Supported Areas in Natural Construct
	CSUTRANS Utility
	CNUMSG Utility
	One Language (Static) Mode

	Appendix — Glossary of Terms
	Index

